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t: In �nan
ial markets, sudden unexpe
ted 
hanges o

ur frequently. We propose anew fore
ast method based on paired evaluators 
onsisting of the stable evaluator and the rea
tiveevaluator that is good at dete
ting and adapting to the 
onse
utive market 
hanges. We 
ondu
t aba
k-testing using �nan
ial data in US. The experimental results show that our method is e�e
tiveand robust even against the late-2000s re
essions.1 Introdu
tionTo 
ope with risks in volatile �nan
ial markets,portfolio theory has been used as a standard tool formore than thirty years. Modern portfolio theory isbased on 
apital asset pri
ing model (CAPM) estab-lished by Sharpe [17℄, Lintner [14℄, and Mossin [15℄. Amain 
hara
teristi
 is an emphasis on a pri
e dis
ov-ery pro
ess rather than pri
ing itself. In the CAPM, atheoreti
ally appropriate required rate of return of anasset is obtained a

ording to a 
onsideration of theexpe
ted return of the market, the expe
ted return ofa theoreti
al risk-free asset and non-diversi�able risk.Hen
e, the non-diversi�able risk is used as a singlefa
tor to 
ompare the ex
ess returns of a portfoliowith the ex
ess returns of the entire market that en-tails the set of optimal equities for a portfolio. Morere
ently, Fama and Fren
h [6℄ propose two risk fa
-tors, value and size, and Carhart [4℄ proposes a fa
tor,momentum that are widely a

epted to redu
e someex
eptional 
ases of the CAPM:� momentum: histori
al pri
e in
rease for 12 months,� value: book-to-market ratio,� size: size of a �rm (market 
apitalization).Even though several fa
tors have been proposed topredi
t future market movements, a persistent fa
tor�O��� "�#&'()*'+*' ,-&'./&E-mail: k439bk439b�gmail.
om

has not found yet. Hen
e, a key issue for investorsbased on fa
tors is to sele
t the best fa
tor whi
h sud-denly and signi�
antly 
hanges over time.In data mining and ma
hine learning, several meth-ods have been proposed to deal with 
hanges overtime in unforeseen ways known as 
on
ept drift. Inthis paper, we view qui
k 
hanges of �nan
ial mar-kets as 
on
ept drift problems and propose a solutionfor these problems. A main diÆ
ulty to deal with 
on-
ept drift is the greater number of observations doesnot simply lead to the in
rease of fore
ast a

ura
yunlike phenomena governed by laws of nature.Resear
hes dealing with 
on
ept drift are exten-sive su
h as determination of window size [13, 18℄,
hange dete
tions [2, 3, 8, 9℄, and adaptive ensem-bles [11℄. Our resear
h is most 
losely related tothe determination of window size for a predi
tion.In this domain, there are two main streams to 
opewith 
on
ept drifts, dynami
ally 
hanging the windowsize [13, 18℄ or using two �xed window sizes [1, 16℄. Inthe former stream, as soon as they observe a new data,they investigate 
onsisten
ies with the histories. On
ethey suspe
t an o

urren
e of 
on
ept drift, they ad-just their window sizes. In the latter stream, they usepaired 
lassi�ers to 
ontrol two types of window size.A 
ommon point in the resear
hes in both streams isthat they adjust window size for 
lassi�
ation prob-lems.In 
ontrast, we propose a new fore
ast method thatruns a set of base fore
ast having di�erent window
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sizes of referen
e histories to generate fore
ast val-ues. Among the base fore
asts, the most a

uratebase fore
ast on ba
k-testing is sele
ted by an eval-uator. Hen
e, the best window size in the histori
aldata is sele
ted by our method instead of adjustingwindow size like existing work above. In order to
ope with 
on
ept drifts, we use two types of eval-uators, a stable evaluator and a rea
tive evaluator,similarly to the existing resear
hes of the paired 
las-si�ers [1, 16℄. While the stable evaluator is used asa default evaluator whi
h is supposed to be appro-priate for versatile situations, the rea
tive evaluatoris sensitive to 
hanges. If performan
es of the rea
-tive evaluator ex
eeds ones of the stable evaluator,our method swit
hes to use a base fore
ast sele
tedby the rea
tive evaluator. With respe
t to de
isionsfor swit
hes, we use learning algorithm a

ording tothe histories of performan
es. A main 
hara
teristi
of our proposing method is robustness against 
on-se
utive o

urren
es of 
on
ept drifts. We examine aba
k-testing using a
tual �nan
ial data in US in orderto demonstrate how our proposing method performs
ompared with other existing methods.For a predi
tion, we avoid an investor !s intuitionto sele
t a fa
tor to evaluate a performan
e of ourfore
asting method purely. In addition, we do not relyon the external data su
h as ma
ro e
onomi
 statisti
sin order to be independent from noises 
ontained inthe external data.The rest of this paper is organized as follows. InSe
tion 2, we spe
ify the resear
h problems using a
-tual market data. In Se
tion 3, we detail our propos-ing fore
asting method. Some key 
hara
teristi
s ofour method are shown with some examples in Se
-tion 4. In Se
tion 5, we examine a ba
k-testing and
ompare the performan
es of our method with onesof other representative approa
hes. In Se
tion 6, we
on
ludes this paper.2 Fund Operation in Volatile Fi-nan
ial MarketIn this se
tion, we detail a fa
tor sele
tion prob-lem in �nan
ial markets using monthly histori
al fa
-tor data in US equities market whi
h 
an be obtainedfrom [7℄. We fo
us on three fa
tors, momentum, value,and size as des
ribed in the previous se
tion. For a
omprehension of the e�e
tiveness of fa
tors, we 
al-
ulate fa
tor spread return between the top 10 % and
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? 1: Cumulative Monthly Spread Return of Fa
torInvestments Classi�ed by De
adesthe bottom 10 %. Among these fa
tors, we investigatea method to predi
t the most e�e
tive fa
tor in ea
hmonth. In Figure 1, we illustrate 
umulative monthly10 per
entile spread return on these fa
tors in US eq-uity markets from 1964 to 2009 
lassi�ed by de
ades.If a 
umulative spread return is in
reased 
onstantlyand sharply, this fa
tor is 
onsidered to be e�e
tive.In addition, a 
onstant sharp de
rease is also an e�e
-tive whi
h works for 
ontrarians. Considering thesepoints, we observe that momentum has been well-performed until 1990s; however it 
u
tuates heavilyin 2000s. Size fa
tor is 
onstantly de
reased in 1960s,1970s and 2000s. This negative sign is a desired phe-nomenon, sin
e smaller size 
ompanies are expe
tedto grow faster as proposed in Fama and Fren
h [6℄.Throughout the years, e�e
tive fa
tors 
hange overtime qui
kly and sharply. In the �gure, we illustratea 
ase to invest equally on these fa
tors that is av-erage investment, (momentum + value� size)=3, asa ben
hmark purpose. While the average investmentdoes not make a huge loss entirely, it looses some op-portunities to gain greater pro�ts. We are interestedin developing a fore
asting method that gains greaterpro�ts without in
reasing risks of huge losses.In 
ontrast to this stati
 approa
h, our interest is todevelop a fore
asting method that predi
ts the moste�e
tive fa
tor, whi
h may 
hange over time. As we
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are able to 
omprehend from the histori
al data inthe �gure, the most e�e
tive fa
tors are not 
onstantover time. DiÆ
ulties with respe
t to the predi
tionof the most e�e
tive fa
tors are mainly 
aused by thefollowing two reasons. First, the pri
e dis
overy pro-
ess is not 
onsistent over time for ea
h fa
tor. Somefa
tors may be rapidly e�e
tive, but others may taketime. Se
ond, an e�e
tive fa
tor 
an be either for-ward or 
ontrary. Hen
e, fore
asting methods arene
essary to predi
t both the largest absolute valueof fa
tors and their signs. Under su
h a dynami
ally
hanging environment, key questions are how to iden-tify qui
k market 
hanges and how to adapt to these
hanges appropriately. Noti
e that these 
hanges arenot unique. In some 
ases, the most e�e
tive fa
tor issuddenly swapped by another fa
tor. In other 
ases,the swap is gradually o

urred. An important aspe
tis that the 
hange types are not �xed. Hen
e, a 
hal-lenge is to develop a fore
ast model whi
h is robustagainst some di�erent types of 
hange types. In thefollowing se
tion, we propose our fore
asting method
onsidering these aspe
ts.3 Proposing MethodIn this se
tion, we detail our proposing fore
astingmethod, paired evaluators method (PEM), whi
h isadaptive to market 
hanges.3.1 PreliminariesLet T = f�T; : : : ;�1; 0; 1; : : : ; Tg be the set of dis-
rete time and t 2 T be a 
ertain time. We 
all t = 0as the 
urrent time. We denoteH = ft 2 T : t < 0g asthe set of histori
al periods. Let Xt 2 <z be a ve
torin z-dimensional feature spa
e observed at time t 2 Tand yt 2 < be its 
orresponding label to be predi
ted.We refer to Xt as an instan
e, a pair (Xt; yt) as alabeled instan
e, instan
es (X�T ; : : : ; X�1) as histor-i
al dataXH , and an instan
eX0 as a target instan
e.As time is in
remented, the number of histori
al datais in
reased and the 
urrent time is shifted. Noti
ethat a target instan
e X0 is not observed until timeis in
remented.

3.2 An Overview of Our Proposing Fore-
asting MethodIn this se
tion, we present an overview of our fore-
asting method. We use several di�erent base fore-
asts and sele
t a base fore
ast whi
h is expe
ted tobe the best fore
ast a

ording to the past experien
es.We refer a way to sele
t a base fore
ast as an evalua-tor. A key 
hara
teristi
 of our method is an evalua-tion of performan
es of evaluators.Let f be a base fore
ast. Let F be a set of basefore
ast. Let us denote f i as the i-th fore
ast amongF and we also denote I as the set of fore
asts. Wedenote Æit = yt � f i(XHt ) as a fore
ast error at time twhi
h is obtained at time t+ 1.Our proposing fore
ast method proposes the opti-mal base fore
ast f î among a set of base fore
astsF without severe parameter tunings. As depi
tedin Figure 2, this method 
onsists of four parts: (1)pre-pro
essing, (2) base fore
ast proposal a

ordingto evaluator, (3) evaluator sele
tion, and (4) fore
ast-ing. In part (1), past fore
ast errors Æ for all basefore
ast are 
al
ulated, respe
tively.In part (2), we use paired evaluators that are a sta-ble evaluator and a rea
tive evaluator. Ea
h evalua-tor proposes the expe
ted best base fore
ast based ondi�erent weights for evaluations. Let w be a weightve
tor of fore
ast errors. Let ~i be the ~i-th base fore-
ast whi
h is expe
ted to be the best base fore
ast.Multiplying a weight ve
tor to fore
ast errors, we areable to 
ompare performan
es of base fore
asts andwe are also able to obtain the estimated best basefore
ast as follows:~i = argmini2I Xt2HwtÆit (1)where wt is an element of the weight ve
tor. A

ord-ing to Equation (1), a base fore
ast that minimizesthe weighted errors is estimated as the best base fore-
ast. Here, let us denote g as an evaluator that sele
tsthe optimal base fore
ast based on Equation (1).If a weighting ve
tor has heavier weights for morere
ent errors, it prefers short-term fore
ast a

ura
ywhi
h is a rea
tive evaluator gR. Contrary, the 
atweight ve
tor prefers long-term fore
ast a

ura
y whi
his a stable evaluator gS . Long-term a

ura
y is pre-ferred in general. However, right after a 
on
ept drift,the long history of fore
ast errors may not tell a properfore
ast. A

ording to these errors and evaluators, abase fore
ast is proposed as shown in Equation (1).
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? 2: Stru
ture of Paired Evaluator MethodLet ~iSt be the expe
ted best base fore
ast a

ording tothe stable evaluator whi
h is ~iSt = gS(ÆHt ), where Æ =fÆigi2I . Similarly, the expe
ted best base fore
asta

ording to the rea
tive evaluator is ~iRt = gR(ÆHt ).Sin
e the proposed base fore
ast depends on thesetting of the evaluator, a 
entral issue is how to se-le
t evaluators whi
h is part (3) of our method. Withrespe
t to the sele
tion, there are some key ideas be-hind our method. First, the stable evaluator workswell under versatile situations. It is used as a defaultevaluator. Se
ond, the stable evaluator may not workwell right after a poor performan
e. If the rea
tiveevaluator has performed better than the stable eval-uator at the similar 
ases in the past, our methodswit
hes to use the rea
tive evaluator. Finally, if pastexperien
es are in
onsistent, re
ent experien
es havea greater importan
e for de
ision makings. Consid-ering these aspe
t, we sele
t an evaluator based on alearning-algorithm. Let � be an evaluation fun
tionof evaluators that assigns a degree of superior evalu-ator on a performan
e of the stable evaluator. Basedon this evaluation fun
tion, we obtain the expe
ted

best base fore
ast î su
h that:ît = 8<:~iSt ; if �t(Æ~iSt�1t�1 ) � �;~iRt ; otherwise: (2)where � is a threshold parameter. We detail how theevaluation fun
tion is updated a

ording to the pastexperien
es in the following se
tion.On
e an evaluator is sele
ted in part (3), part (4)is dire
tly indu
ed and we obtain the best performingbase fore
ast f î and its fore
ast value f î(XHt ). In thefollowing se
tion, we detail part (3) of our proposingfore
asting method.3.3 Update Rules of the Evaluation Fun
-tionThe evaluation fun
tion of evaluators is updated a
-
ording to a learning-based approa
h that 
onsists ofthree types of update rules: (i) initialization, (ii) aperforman
e of an evaluator ex
eeded a performan
eof another evaluator, and (iii) no di�eren
es on per-forman
es between two evaluators. Regarding to the�rst update rule, we set �(Æ) = 0 for all Æ. The se
-ond rule is for 
ases where one evaluator performs
23



better than another. On
e a
tual value yt�1 is real-ized at time t, we obtain fore
ast errors of the sta-ble evaluator and the rea
tive evaluator, Æ~iSt�1t�1 andÆ~iRt�1t�1 , respe
tively. If the stable evaluator performsbetter than the rea
tive evaluator, i.e., Æ~iSt�1t�1 < Æ~iRt�1t�1 ,�t(Æ) := �t(Æ) + � for all Æ � Æ~iSt�1t�1 , where � > 0 isan update 
oeÆ
ient. Contrary, if the stable evalu-ator performs worse than the rea
tive evaluator, i.e.,Æ~iSt�1t�1 > Æ~iRt�1t�1 , �t(Æ) := �t(Æ)�� for all Æ � Æ~iSt�1t�1 . Thethird rule is for 
ases where both evaluators performequal. In su
h 
ases, the e�e
ts of past experien
esare redu
ed by a redu
ing 
oeÆ
ient 0 � � � 1 asfollows, �t(Æ) := ��t(Æ) for all Æ.4 Paired Evaluators Method andDrift TypesIn this se
tion, we show some simple examples toshow how our proposing fore
asting method, pairedevaluators method (PEM), deals with typi
al drifttypes, sudden drift, in
remental drift, gradual drift,and re
urring 
ontexts. Noti
e that a single windowsize approa
h has a problem to deal with these drifttypes. While smaller window sizes tend to �t for sud-den drift and in
remental drift, they are too sensitivefor gradual drift and re
urring 
ontexts. It is signif-i
ant to swit
h to an appropriate window size that
orresponds to an observed drift type. In order toswit
h the window size, PEM uses two types of eval-uators, the stable evaluator and the rea
tive evalua-tor, as we have shown in the previous se
tion. Thisapproa
h, parti
ularly, works for gradual drift and re-
urring 
ontexts as we show in some examples.We prepare the set of arti�
ial data that 
hara
ter-izes typi
al drift types. There are two time series thatare either 100� � or 20� � where � is randomly drawnfrom uniform distribution ranging [�5; 5℄. A key taskis to predi
t a series that will be the greater value inthe following time. Regarding to PEM, we use threebase fore
asts, 3-month average, 6-month average and12-month average; we set an update 
oeÆ
ient as 1,a de
reasing 
oeÆ
ient as 0, a threshold as 0. Asfor parameter of evaluators, we use 12 months eq-uitable weights w = f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g fora stable evaluator and 3 months equitable weightsw = f1; 1; 1g for a rea
tive evaluator.At �rst, we show examples of sudden drift and in-
remental drift in Figure 3. The top graphs show
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? 3: Sudden Drift and In
remental Driftseries 1 and 2 of the respe
tive drift patterns. Forboth 
ases, series 1 is to be predi
ted at the begin-ning, series 2 swaps at 
ertain time, and series 2 isto be predi
ted after the swap. While sudden drifto

urs at time 39, in
remental drift starts 
hangingat time 33, takes over observed at time 37, and ends
hanging at time 39. The bottom graphs show perfor-man
es of paired evaluators. For both drift patterns,both evaluators have exa
tly the same performan
es.They require the minimum time, three time periods,to 
orrespond to the drifts. Di�eren
es between thestable evaluator and the rea
tive evaluator are ob-served if drifts o

ur more frequently.Next, we show examples of gradual drift and re-
urring 
ontexts in Figure 4. The top graphs showseries 1 and 2. For both 
ases, series 1 is to be pre-di
ted at the beginning and sudden 
hanges o

ur fre-quently. While o

urren
e of swaps be
omes morefrequent over time in gradual drift, swaps o

ur 
y
li-
ally and randomly in re
urring 
ontexts. In su
h
ases, some in
onsisten
ies of past experien
es o

urbetween the stable evaluator and the rea
tive evalua-tor as we show in the middle of the graphs. In some
ases, the past experien
e works for a good fore
ast.If the past experien
es work good, PEM tends to fol-low su
h experien
es. In the bottom graphs, we showdi�eren
e of performan
es of PEM and the stable eval-uator. PEM tends to ex
eed the performan
e of the
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? 4: Gradual Drift and Re
urring Contextsstable evaluator if one evaluator works better thananother in 
onse
utive times.In reality, it is diÆ
ult to know or identify driftpatterns before o

urren
es. In the following se
tion,we use a
tual �nan
ial data to show performan
es ofPEM 
onsidering su
h diÆ
ulties.5 Experimental ResultsIn this se
tion, we show performan
es of our propos-ing fore
asting method based on a ba
k-testing usingFama-Fren
h �nan
ial data whi
h is des
ribed in Se
-tion 2. For a ben
hmark purpose, we 
ompare withtwo representative fore
asting methods with dynami
fore
ast window size, Competing Windows Algorithm(CWA) and FLORA.CWA adjusts the size of fore
ast windows a

ord-ing to 
hara
teristi
s of histori
al data proposed byLazares
u et al. [13℄. If a new observation is 
on-sistent over time, this algorithm uses larger windowssize in order to in
rease fore
ast a

ura
y with an ex-pe
tation of no 
on
ept drift o

urren
e. Otherwise,it uses a smaller window size to deal with 
on
eptdrifts. In order not to fo
us too mu
h on a par-ti
ular window size, it uses three types of windows,small-medium-large, that are dynami
ally 
hanging.For a fore
asting, the most a

urate fore
ast is used

among the fore
asts generated from the three win-dows. FLORA is a representative learning systemthat deals with re
urring 
ontexts with its dynami-
ally 
hanging window size proposed by Widmer andKubat [18℄. While every step FLORA observes a newdata, it sear
hes relevant histori
al data and 
lassi�esthe sear
hed data into positive data, negative dataand both type data. Based on these data, FLORAgenerate fore
ast. A

ording to results, FLORA up-dates its sour
e of 
on
epts: either addition of a new
on
ept into the system or dis
ard of the old 
on
ept.First, we des
ribe some 
on�gurations of parame-ters used for PEM and two well-known dynami
 win-dow size methods, CWA and FLORA. Then, we showexperimental results.With respe
t to PEM, we use 6 basi
 fore
asts, 3-month top mode, 6-month, 9-month, 12-month, 18-month, 24-month average. 3-month top mode sele
tsthe most frequent fa
tor that performs the best amongthree months. We use smoothed data for averagesin whi
h highly e�e
tive points ex
eeding 1.5 stan-dard deviations are redu
ed. As for parameter ofevaluators, we use 12-month equitable weights w =f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g for a stable evaluator and5-month de
reasing weights w = f0:03125; 0:0625;0:125; 0:25; 0:5g. With respe
t to 
oeÆ
ients, we setan update 
oeÆ
ient as 1, a de
reasing 
oeÆ
ient as0:005, a threshold as 0.Regarding to CWA, there are three types of win-dows size, small-medium-large, with default windowsizes, 3, 6 and 12-month, respe
tively. If a distan
ebetween the latest instan
e and the histori
al instan
esis within a 
onsistent 
oeÆ
ient 3.88, whi
h is 2 stan-dard deviation of the sum of the absolute instan
eswithin the �rst 12 months, the medium window size isenlarged up to 11-month and the large window size isthe double size of the medium window size. If 
onsis-ten
ies are persistent more than 12 months, the largewindow 
orresponds to the size of persisten
e. Basedon averages of three window sizes, the best fa
tor is
al
ulated. The type of the window size is sele
teda

ording to the performan
e of the previous month.With respe
t to FLORA, we tuned the algorithmin order to deal with our test data as follows. We
lassify instan
es into 24 states that 
onsist of thebest fa
tor and the se
ond best fa
tor with signs. Thestate patterns are to allo
ate the following two f thebest fa
tor with a positive sign, the best fa
tor witha negative sign g and f the se
ond best fa
tor with apositive sign, the se
ond best fa
tor with a negative
25



sign g in the three positions that are 2 � 2 � 2 �3. On
e FLORA observes a new instan
e, it looksup the same state in the past. Among the mat
hedstate, it 
al
ulates the most frequent top fa
tor in thefollowing month whi
h is used for a predi
tion in thismonth. We set default sear
h periods as 36 months.If the mat
hed state is less than a minimum numberof mat
h 5, it grows the number of windows up to48 months. If the a

ura
y is greater than 50 % andthe re
ent result is ina

urate, redu
es window size20 % where the minimum window size is 24 months.Otherwise, keep the same window size as the previousmonth.Now, we show the experimental results. We depi
tthe 
umulative performan
es of the three models 
las-si�ed by de
ades in Figure 5. A

ording to the exper-iment, PEM performs better than the other two mod-els in most of time. An important aspe
t to evaluateperforman
es is persisten
y of growth. In most time,PEM 
ontinuously performs well. While 1970s, theearly 1980s, the early 1990s, and the early 2000s arerelatively easy periods a

ording to the average per-forman
e, PEM is quite stable. Even though the restof periods are not easy, it performs good due swit
hesof evaluators e�e
tively during this periods. Surpris-ingly, growth during this period is quite remarkablethat in
ludes the �nan
ial 
risis of 2008-2009. Keyreasons are (i) PEM qui
kly adapt to the drift whi
his the reverse of momentum, and (ii) This works 
on-se
utively.CWA also performs well similarly to PEM. How-ever, in the middle of 1990s, it looses its 
ontrol fora while. A disadvantage of CWA is a 
hange of win-dow size is one even though they have three sizes ofwindows. Hen
e, it may take time to sear
h an ap-propriate window size. With respe
t to FLORA, per-forman
es are not good dynami
ally 
hanging envi-ronments su
h as the middle of 1990s and 2000s. Theperforman
e of FLORA is good if there are many sam-ple data in the past. However, in our data set, thisis not always true. Similarly, paired learner in [1, 16℄is not implemented in this experiment, sin
e a rea
-tive learner is not eÆ
ient with a small number ofreferen
e periods with our data.6 Con
lusionsIn this paper, we have introdu
ed our fore
astingmethod, paired evaluators method, whi
h tends to im-
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? 5: Ba
k-testing Results of Cumulative Monthly 10Per
entile Spread Return of Portfolios Classi�ed byDe
adesprove fore
ast performan
es for 
onse
utive 
on
eptdrift patterns, su
h as gradual drift and re
urring 
on-texts. In our method, a set of base fore
asts is usedfor a predi
tion whi
h is sele
ted by evaluators. Weuse paired evaluators, a stable evaluator and a re-a
tive evaluator. A sele
tion of evaluator is based onlearning algorithmwhi
h learns the past performan
esof evaluators. By learning, paired evaluators method
ontinuously attempts to dete
t an alternative evalua-tor to improve fore
ast a

ura
y. This approa
h suitsfor 
onse
utive 
on
ept drift patterns.We have introdu
ed a methodology to deal with a�nan
ial investment problem, a fa
tor sele
tion prob-lem, using 
on
ept drift solutions. Experimental re-sults show that our proposing method has dis
overede�e
tive fa
tors more eÆ
iently than the other tworepresentative methods, CWA and FLORA, whi
h
hange the fore
ast window size dynami
ally. Ourmethod is robust against many diÆ
ult 
ir
umstan
esin
luding the late-2000s re
ession.In a broader sense, paired learners for online 
lassi-�
ations, su
h as paired learners having two di�erentwindow sizes for 
lassi�
ations based on naive Bayesapproa
h [1℄ and Todi (two online 
lassi�ers systemfor learning and dete
ting 
on
ept drift) based on a
26



statisti
 test [16℄, are similar to our approa
h. Theyuse paired 
lassi�ers to 
ontrol stability and rea
tiv-ity for 
hanges over time. While they dire
tly set thewindow size on 
lassi�ers, whi
h is �xed, in our ap-proa
h, window sizes are set by respe
tive base fore-
asts instead of evaluators. Hen
e, our approa
h usesmultiple window sizes for a set of fore
asts and a fore-
ast having the most appropriate window size tends tobe sele
ted by evaluators. In our experiments, thesepaired learners for 
lassi�
ations are not used, sin
eour experimental data does not have similar featuresin short periods.In the �nan
ial investment problem, we have fo-
used on a sele
tion of the best fa
tor. This is not arestri
tion in pra
ti
e. In the future, we 
onsider themethod to set the most appropriate weights for thethree fa
tors.
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