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Abstract: We present the use of Memetic Algorithms for the optimization of Financial Port-
folios. Memetic Algorithms are hybrid algorithm where the evolution of individuals lead to the
improvement of the portfolio structure, and local optimization rules contribute to the optimization
of the weights of the financial assets. We compare this method with older GA-based methods for
optimizing portfolios, and observe a noticeable improvement.

1 Introduction

The Portfolio Optimization problem consists of divid-
ing an amount of capital between multiple assets in
order to maximize the return, and minimize the risk
of the investment.

Investment Portfolios are used by financial insti-
tutions in the management of long term investments,
like savings accounts, retirement funds, etc. When
real life large data sets and constraints are added,
though, this becomes a tough problem that cannot
be solved by numerical methods.

Because of this, the use of computational heuris-
tics like neural networks and evolutionary algorithms
has been an active topic of research. In particular,
Genetic Algorithms is one of the most popular ap-
proaches recently. This popularity is partly because
it is very easy to represent a Portfolio as a real val-
ued array, and use that array as the genome in the
Genetic Algorithm.

However, this array representation has a limita-
tion. It does not include information about the re-
lationship between different assets in a portfolio. To
address this issue, a Tree-based Genetic Algorithm
was developed (TGA) [2]. It implements a binary tree
representation of the portfolio, where the leaf nodes
are the assets and the trunk nodes represent the re-
lationship between these assets (See Figure 1). Early
results showed that by using this representation, it
was possible to reduce a portfolio produced by GA to
its core components, thereby reducing its associated
trading costs.

In this work we extend this Tree-based Genetic
Algorithm by adding a local search step. We call this
hybrid heuristic the Memetic Tree-based Genetic Al-
gorithm (MTGA). In the MTGA, the Evolutionary
step generates the tree structure, which will select the
assets for the portfolio, and determine the hierarchi-
cal relationship between them. The local search op-
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Figure 1: A tree genome and its corresponding port-
folio. The values in the intermediate nodes indicate
the weight of the left sub tree. The complement of
that value is the weight of the right sub tree. The
final weight of each asset (ax) is given by the sum of
the weights of all occurrences of that asset in the tree.

timizes the weights at each node recursively, starting
from the nodes closest to the terminals towards the
root.

By using simulations with historical data from real-
world markets, we observe that MTGA finds portfo-
lios with higher risk-return values higher and when
compared to the TGA. This method can also be used
to reduce the trading cost between different scenarios.



2 The Portfolio Problem

The resource allocation problem is a traditional op-
timization problem, which consists of distributing a
limited “resource” to a number of “jobs”, in order to
satisfy one or more utility functions [4].

The Portfolio Optimization problem falls in this
category. The limited resource is the capital available
for investment, and the jobs are the varied assets in
which this capital can be invested (for example, com-
pany stock or foreign currency. The utility functions
in this problem are the Portfolio Estimated Return,
to be maximized, and the Portfolio Risk, to be mini-
mized.

The model for the Portfolio Optimization problem
was formally proposed by Markowitz [6]. Markowitz’s
Portfolio Model could be solved by numerical meth-
ods, like Quadratic Programming [13].

However, when adding real world constraints to
the problem (for example, large number of assets, re-
strictions to the values of weights, trading costs, etc),
the search space becomes large and non-continuous,
and unsolvable by numerical methods. This is what
motivates the use of Search heuristics like Evolution-
ary Computation to solve Portfolio Optimization prob-
lems in real world conditions.

2.1 The Markowitz Model

A portfolio P as a set of N real valued weights (w0, w1, ...wN )
which correspond to the N available assets in the
market. These weights must obey two basic restric-
tions [13]: The total sum of the weights must be equal
to one; and all weights must be positive.

The utility of a portfolio is measured by its Esti-
mated Return and its Risk. It is calculated as:

RP =
N∑

i=0

Riwi (1)

Where N is the total number of assets, Ri is the given
estimated return of each asset, and wi is the weight
of each asset in the portfolio.

The risk of an asset is given as the variance of its
return over time (variability). The risk of the portfolio
is defined as:

σp =
N∑

i=0

N∑
j=0

σijwiwj (2)

Where σij , i 6= j is the covariance between i and j.
While the risk is usually stated as the variance of the
return of a given asset, there are other definitions of
risk that have been used to bias the resulting port-
folios towards certain kinds of investment strategies.
For other risk metrics, see the works of Harish[10] and
Shu[8].

These two utility measures can be used separately
to determine the optimal portfolio, or they can be
combined. The Sharpe Ratio measures the trade off
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Figure 2: Risk-return projection of candidate port-
folios. The search space is bounded by the Efficient
Frontier. Sharpe ratio is the angle of the line between
a portfolio and the risk-free rate.

ratio between risk and return for a portfolio, and is
defined as follows:

Sr =
RP − Rriskless

σp
(3)

Where Rriskless is the risk-free rate, an asset which
has zero risk and a low return rate (for example, gov-
ernment bonds). The relationship between these three
utility measures is illustrated in Figure 2.

2.2 Real World Constraints

The Markowitz Model, as described above, can be
solved by optimization techniques such as Quadratic
Programming [13]. However, when real world con-
straints are added, the problem becomes too complex
for simple optimization techniques. Practical port-
folios are composed from markets with hundreds to
thousands of available assets, and the calculation of
risk measures grows quickly in relation to the number
of assets.

Also, real world applications have constraints re-
lated to the values of weights, and to trading. Weight
constraints include maximum and minimum weights
and lots (indivisible unit of a held asset). These con-
straints turn the search space non-convex, making the
problem harder.

Trading constraints include minimum and maxi-
mum trading volume (how much of an asset you can
buy at once) and trading cost (proportional to the
amount of asset traded). These constraints take effect
when multiple scenarios (time periods) are considered,
and affect greatly the outcome of the optimization
process. In our previous work [1], we have addressed
the problem of how to reduce the difference between
portfolios of consecutive scenarios to reduce trading
cost. Our current proposal also addresses this con-
cern, by removing from the candidate solutions assets
that do not contribute to the final result, but increase
the trading cost of the portfolio.



3 Related Research

Two important questions in the Portfolio Optimiza-
tion problem are how to select the assets and the
weights. The simplest answer is to use a single array
with one real value for the weight of each asset [3, 5].

A more elaborated strategy to select the assets
which will participate of the portfolio is to use two
arrays: a binary array, which indicates whether an
asset is part of the portfolio or not, and the real valued
array to calculate the weights of the assets [1, 9].

A somewhat different way to assemble the portfo-
lio is to use GP to evaluate each asset. The GP can be
used to calculate the suggested weight of each asset
from technical indicators [11], or to generate a rank-
ing of assets, which will be used to select the assets
to add to the portfolio [12].

4 Memetic Tree-based Genetic
Algorithm

The basic idea of the MTGA is to establish a hier-
archical set of relationships between the assets that
belong to the portfolio, and use those relationships
to improve the exploitation abilities of the Genetic
Algorithm.

The tree structure leads to this exploitation by
dividing-and-conquering the portfolio in two different
ways: It allows the evaluation of the fitness of individ-
ual trees, which leads to the crossover based on these
fitness values. It also allow the local search step to
optimize many 2-variable nodes, instead of one giant
portfolio with hundreds of variables at once.

Some of the ideas here, like the local optimiza-
tion and guided crossover, are inspired by Inductive
Genetic Programming [7], a Genetic Programming al-
gorithm used for system identification.

However, unlike iGP, the MTGA is still a GA and
not a GP. The main difference here is that while the
GP walks the trees from the inputs in the terminals
and perform various operations in them to obtain an
output in the root node, the tree-based GA goes the
inverse way, starting with all the resource in the root
node, and dividing it as it progresses down through
the tree. The output is the list of weights obtained
from the terminal nodes together.

4.1 Tree Representation

Each solution in the Genetic Algorithm is represented
as a binary tree. Each non-terminal node holds the
weight between its two sub trees. This weight is a
real value, w, between 0 and 1, which indicate the
weight of its left sub tree (the choice of left over right
is arbitrary). The right sub tree of has weight 1 − w.
Each terminal node holds the index of an asset in the
market. It is possible to have more than one terminal
pointing to the same asset in the same tree. Figure 1
shows this representation.

To extract the portfolio from this representation,
we calculate the weight of each terminal node by mul-
tiplying the weights of all nodes that need to be visited
to reach that terminal, starting from the root of the
tree. After all terminal nodes are visited, the weights
of those terminals that point to the same asset are
added together. The assets which are not mentioned
in the tree are assigned a weight of 0.

There are some characteristics of this structure
which are important to consider when implementing
an Evolutionary Algorithm based on it:

First Every sub tree in an individual can be treated
as if it were a normal tree. This is because the
root node’s structure is identical to that of any
intermediate node. This allows each sub tree to
have its own individual fitness, calculated in the
same way as the fitness of the main tree. This
is used in the specialized genetic operators.

Second A portfolio extracted from this representa-
tion is always normalized. This is because the
weight on each node is limited to the 0..1 in-
terval, and the weight of each terminal is the
multiplication of the node weights. Because of
the first characteristic, this also applies to sub
trees.

Third The maximum number of assets in a portfolio
represented by a tree is limited by the depth of
the tree. As each terminal corresponds to one
asset, a tree with depth d may hold at most
2d−1 assets. Because of incomplete trees and
terminals with repeated assets, usually the ac-
tual number of assets in a tree is much smaller
than this.

4.2 Evolutionary Operators

The tree representation for an individual’s genetic ma-
terial in the MTGA requires the redesign of the basic
evolutionary operators (crossover and mutation), but
it also allow the development of new operators that
use the unique characteristics of the tree representa-
tion.

The mutation operator works by cutting off the
tree at a point, and replacing the cut-off sub tree
with a randomly generated sub tree. In this work,
the cut-off point is selected by first randomly choos-
ing the target depth (with a linear probability), then
following a random path from the root node until the
desired depth is achieved. This selection method fa-
vors cut-off points near the leaves, which results in
less aggressive mutations (see Figure 3).

The crossover operator works by exchanging sub
trees between two individuals. One crossover point is
chosen for each tree, and the sub trees that start from
that point on are swapped between the two trees.

If the crossover point is chosen at random, the op-
erator is called Simple Crossover. Like in the muta-
tion operator, in the simple crossover a depth is cho-
sen with linear probability, and a path is randomly
followed from the tree until the target depth.
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Figure 3: Crossover (BWS) and Mutation operators
for the tree representation.

A second crossover operator used in this work is
the Best-Worst Sub tree crossover (BWS). In this op-
erator, the sub tree with the highest fitness from the
first parent is exchanged with the sub tree with worst
fitness in the second parent. This operator usually
improves the fitness of the individual receiving the
better sub tree [2]. This means that the BWS can
be used to emphasize a policy of exploitation in the
search (See Figure 3).

4.3 Local Search

The local search operator executes a simple hill climb-
ing optimization on each node of an individual. It
starts on the deepest non-terminal nodes, and then
works its way back towards the root.

For each visited node, the return and risk value for
the left and right children are obtained, and used to
calculate the utility function as if the node was a two-
asset portfolio. The pseudo-code for the hill climbing
function can be seen in Figure 4.3.

Where the parameter meme speed is the value by
which the weight changes every iteration, meme accel
must be < 1.0, and is the value by which meme speed
changes every time the weight cross the optima point.
And meme tresh is the minimum value of meme speed
which signalizes the end of the search. The search also
ends if the weight reaches 1.0 or 0.0 (when the optima
is not in the weight range 1..0).

The main use of this operator is to improve the
weights of the individuals during the evolutionary run.
A second utility of this operator, though, is to re-
balance the portfolio between scenarios. When we use
a portfolio through a long period of time (multiple

while (meme_speed > meme_tresh AND 0 < weight < 1)
do

old_fitness = fitness;
weight = weight + meme_speed;

if (weight > 1)
weight = 1;

if (weight < 0)
weight = 0;

calculate_fitness(weight);

if (fitness < old_fitness)
meme_speed = meme_speed * meme_accel * -1;

done

Figure 4: Algorithm for local search

scenarios), it is necessary to adjust the portfolio to
changes in the market [1].

By repeating the use of local-search operator after
a change of market scenario, we can adapt the weights
between the assets to the new conditions of the mar-
ket. Because the the assets in the portfolio does not
change, we achieve lower costs than if we started the
evolutionary system anew for each scenario.

4.4 Computational Cost

Using Guided Crossover and Local Search (Memetic
Step) improve the exploitation capabilities of the Ge-
netic Search in exchange for an increased computa-
tional cost.

The basic cost to calculate the fitness value of a
portfolio is O(mn2), where n is the number of assets,
and m is the length of the historical data.

Guided Crossover requires that each node in the
tree has its own fitness value. This increases the
computational cost by one order of magnitude, to
O(mn3). The local search is also applied to each node,
and its total computational cost is O(ns loga

t
s ), where

s, a and t are the memespeed, memeaccel and meme-
tresh parameters, respectively. In practice, the cost of
the memetic step is much smaller than the evaluation
step.

However, this computational burden can be greatly
reduced by an appropriate implementation of the tree
structure. Since the fitness evaluation and the memetic
step occur in a bottom-up fashion, the number of
nodes which need to have their fitness calculated is
actually small.

During tree generation all nodes have to be evalu-
ated. During mutation, the new nodes, and the par-
ent nodes of the new tree only need to be re-evaluated.
In the worst case, this means n/2 nodes for a depth 2
mutation, but this value decreases sharply for deeper
mutations. For crossover, only the parent nodes of
the cut-off points need to be re-evaluated, which in
the worst case, means that the evaluation cost for an
individual generated by crossover is O(mn2 log n).



5 Experiments

To test the validity of our system, we ran 24 simula-
tions based on historical data. For each simulation,
we compared the results of the MTGA, the MTGA
without guided crossover, the TGA, the TGA with-
out guided crossover, and three array based systems
- a binary array GA, a real array GA and a mixed
array GA.

All results displayed in this section, unless other-
wise noted, are the average results of 10 experiment
runs with different random seeds.

5.1 Data set

The experiments described here were performed on
the NASDAQ100 data set, composed of 100 securities
from technology related companies. We selected 12
one month periods as scenarios, for this data set and,
for each period, used the moving average of the re-
turns of the previous year as a measure of Expected
return.

5.2 Parameters

We used 300 generations and 200 individuals per gen-
eration. The crossover rate was 0.8, and the mutation
rate 0.03. The tree depth was 8 (128 terminals in a
full tree). The riskless asset’s return was set as 0.003.

For the MTGA system, we used a 0.6 chance of
executing the local search step for each individual.
The chance of executing the guided crossover was 0.6
per crossover. The sensitivity of the system for these
parameters is not explored in this work.

The parameter for the local optimization step are:
0.1 for meme speed, 0.333 for meme delta, and 0.003
for meme tresh. Other than meme tresh, which changes
the precision of the search, changing these values does
not seem to affect the quality of the local search.

5.3 Fitness Evaluation Results

The results from the experiment are presented on Ta-
ble 1. The value of the expected return seems to be
high, independently of the method. This is because
optimizing the return only requires the selection of
the asset with the highest return in the period.

However, to achieve a high Sharpe ratio, a variety
of assets must be selected, and we can observe how
the MTGA is able to achieve a higher Sharpe ratio
than any of the previous methods.

By observing the fitness behavior of each system,
we can understand why the MTGA has a higher per-
formance than previous system. Figure 5 shows the
fitness improvement of the MTGA, the TGA, the mixed
array based GA, and the real valued array based GA.

It can be seen that the MTGA has large jumps in
its fitness during the process. These jumps represent
mutations which are successfully optimized by the lo-
cal search step. Usually such mutations would more
often than not result in a lower fitness, but the use of

Figure 5: Fitness progression for different systems

local search after each crossover increases the number
of possibly useful mutations, improving the search.

In the experiments we noticed that some times the
MTGA would produce super positive outliers. As an
example, while the average fitness for the NASDAQ
data set was between 3000 and 5000, outliers with
fitness up to 50.000 were observed. Observing the
fitness progress of the outliers and normal runs of the
MTGA we see that the cause of this difference are
mutation jumps like those shown in figure 5, but of a
higher magnitude.

This result indicates that the problem’s fitness sur-
face of the portfolio problem is much more bumpy
than was perceived, and may require a more aggres-
sive exploration policy for search systems. For in-
stance, higher mutation settings might improve the
general performance of MTGA.

6 Discussion

We have expanded the tree-based Genetic Algorithm
by adding a local search step, which maximizes the
relative weights of each intermediate nodes.

Simulation experiments show that the MTGA has
higher performance than previous methods, by in-
creasing the number of positive mutations. It was
also observed that the method produces many out-
liers, which indicates that the problem has a very
bumpy fitness landscape.

Current and future investigations include the use
of the local search step to reduce trading cost between
scenarios, the investigation of “introns” generated by
the MTGA, and the sensitivity of the method to mu-
tation parameters.
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