
Estimation of agent-based models using Bayesian deep learning approach of

BayesFlow

塩野剛志 1

Takashi SHIONO1

1クレディ・スイス経済調査部
1Credit Suisse Economic Research

Abstract: This paper examines the possibility of applying the novel likelihood-free Bayesian inference

called BayesFlow proposed by Radev et al. (2020) to the estimation of agent-based models (ABMs). The

BayesFlow is a fully likelihood-free approach, which directly approximates a posterior rather than a

likelihood function, by learning an invertible probabilistic mapping that implements a Normalizing Flow

between parameters and a standard Gaussian variables conditioned by data from simulations. This deep

neural network-based method can mitigate the trilemma in the existing methods that all of the following

three –higher flexibility, lower computational cost, and smaller arbitrariness cannot be achieved at the same

time. As a result of the experiments, BayesFlow certainly achieved the superior accuracies in the validation

task of recovering the ground-truth values of parameters from the simulated datasets, in case of a minimal

stock market ABM. The method did not involve any extensive search of the hyperparameters or hand-

crafted pre-selections of summary statistics, and took a significantly shorter computational time than an

existing non-parametric MCMC approach.

1.Introduction

Agent-based models (ABM) have widely been used in

the field of artificial markets and related-studies to

investigate the microstructure of financial markets. In

recent years, they also have increasingly been adopted in

macroeconomic analysis, as an alternative to DSGE

models. According to Grazzini et al. (2017), agent-based

models are characterized by the following three features:

(1) there are a multitude of agents that interact with each

other and environment, (2) these agents are autonomous,

in the sense that there is no central coordinator such as a

Walrasian auctioneer nor the concealed time-axis in which

the central coordinator works, and (3) aggregation is

performed numerically.

Thus, an ABM allows for extreme flexibility in setting

the behavioral patterns of each agent in heterogeneous

manner. There is no prerequisite for rational expectation

nor (ex-ante) market equilibrium, as the adaptive

processes of learning and selection by agents are explicitly

modeled. This assumption in agent’s behavior is a

fundamental difference between DSGE and ABM. Recent

studies of agent-based macroeconomic modeling like

Assenza et al. (2015) and Caiani et al. (2016) succeed to

reproduce the stylized macroeconomic phenomena such

as the Phillips curve and the Oaken law from simulations

of the ABM with adaptive agents. In other words, a

rational agent was not a necessary condition for these

observed phenomena of macroeconomy. Furthermore,

their models precisely described the relationship between

the financial sector and the real economy by explicitly

modeling the balance sheet for each economic agent,

which are therefore useful in discussing the impact on real

economy from prudent policies on financial institutions.

Because of its flexibility, ABMs are increasingly being

understood for their usefulness as a complement to DSGE

and will continue to be applied to various economic

phenomena.

However, it has often been pointed out that an ABM has

its weakness in the lack of empirical validation (Gallegati

& Richiardi, 2009). The parameters in an ABM are usually

calibrated manually to make the model's simulation

outputs reproduce some particular characteristics of

economic observables (e.g. fat-tail distribution or

volatility clustering in stock return). In response to this

challenge, studies to statistically estimate the parameters

of ABM have recently begun.

Against these backgrounds, this paper adopts a novel

likelihood-free Bayesian inference called BayesFlow

proposed by Radev et al. (2020) for the statistical

人工知能学会研究会資料
SIG-FIN-025

1

estimation of ABMs. This method can mitigate the

trilemma in the existing methods that all of the following

three –higher flexibility, lower computational cost, and

smaller arbitrariness cannot be achieved at the same time.

The BayesFlow is a fully likelihood-free approach,

which directly approximates a Bayesian posterior rather

than a likelihood function. This method is highly flexible,

only requiring the ability to output simulation data from a

mathematical forward model, and has an asymptotic

theoretical guarantee for sampling from the true posterior

without any specific assumption on the shape of the target

posterior or prior. Hence, it does not need to presume

ergodicity or stationarity of simulated time series of a

model. Indeed, Radev et al. (2020) showed high

accuracies of the BayesFlow even in the cases of

potentially chaotic (the Ricker population model) and non-

ergodic (the Levy-Flight model) mathematical models.

Secondly, in contrast to the typical likelihood-free

methods such as Approximate Bayesian Computation,

BayesFlow does not involve discretionary pre-selections

or hand-crafted design in the critical parts of inference. It

accompanies the learnable summary network which can

compress variable-length potentially large dimensional

inputs into fixed-length small dimensional summary

statistics. Namely, a researcher does not need to pre-select

specific moments of specific observables as a hand-crafted

summary statistics.

Finally, it is computationally efficient, particularly in

the case that repeated inferences with different

observation datasets are needed. BayesFlow realizes

amortized inference, where estimation is split into a

computationally intensive training phase, and a much

cheaper inference phase. In the training phase, BayesFlow

tries to learn a model to output an approximate posterior

that works properly for any possible observation sequence.

Then, evaluating the trained model over a specific

observation dataset is computationally very cheap, so that

the upfront training efforts amortizes over multiple

inferences.

In the next section, I explain a basic structure of the

BayesFlow comparing with other related methodologies.

Then, the procedure and results of validation are presented

in Section 3, before discussing the advantages and

limitations with conclusion.

2.Methods

2.1.Notation

In the following, I denote the data simulated from

agent-based model as 𝑋1:𝑇 ≡ (𝑋1, … , 𝑋𝑇) ∈ ℝ𝐾 ×,… ,×

ℝ𝐾 , where individual 𝑋𝑡 is a vector of observable

variables in a model with its dimension being denoted as

𝐾 . The number of observation points in a dataset is

denoted as 𝑇 to make it clear that simulation outputs

from an ABM are usually multivariate time-series.

Simulated data is also expressed as 𝑋1:𝑇(𝜃) when it

needs to be emphasized that the data is generated from the

ABM with parameters 𝜃. Actual observed data or test data

will be expressed with a superscript as 𝑋1:𝑇
𝑜 . Parameters

of a forward model (i.e. ABM) are represented as a vector

𝜃 ∈ ℝ𝑑.

2.2.Agent-Based Model

The state of the whole system of an agent-based model at

time 𝑡 is described by the collection of all micro-states of

individual agent 𝑖 in time period 𝑡 as 𝑆𝑡 ≡ {𝑠𝑖,𝑡}𝑖=1
𝑁

. The

evolution or the law of transition of each agent’s state is

expressed as:

𝑠𝑖,𝑡 = f𝑖(𝑆𝑡−1, 𝜉𝑡 , 𝜃),

(1)

where fi is an agent-wise state transition function, taking

values in ℝ𝐿 . 𝜉𝑡 ≡ {𝜁𝑖,𝑡}𝑖=1
𝑁

 is a vector to bundle all

stochastic elements. The functions f reflect the detailed

modelling of agent’s learning, selection and interaction

behavior in an ABM, which are typically heterogeneous

and accompanying discontinuities such as if-else

statements.

Aggregate observable variables 𝑋𝑡 are then be defined

over 𝑆𝑡:

𝑋𝑡 = m(𝑆𝑡),

(2)

where a function m aggregates and transforms the

collection of micro-states into observable variables 𝑋𝑡.

Combining the state transition fi in Eq.(1) and

observation m in Eq.(2), a simulation data generation

function 𝐺 of a ABM can be defined as follows:

𝑋1:𝑇 = 𝐺(𝜃, 𝜉1:𝑇) with 𝜉1:𝑇~𝑝(𝜉).

(3)

人工知能学会研究会資料
SIG-FIN-025

2

This function 𝐺 effectively corresponds to one shot of ABM

simulation run with the parameters 𝜃 and the stochastic

elements 𝜉1:𝑇 sampled from the known distribution1.

2.3.Bayesian Inference on Agent-Based Model

In Bayesian inference, the posterior defined below

contains all information about 𝜃 extractable from a series

of observations 𝑋1:𝑇:

𝑝(𝜃|𝑋1:𝑇) =
𝑝(𝑋1:𝑇|𝜃)𝑝(𝜃)

∫ 𝑝(𝑋1:𝑇|𝜃)𝑝(𝜃) 𝑑𝜃
.

Even when a closed-form expression of the posterior is

unobtainable, various sampling schemes from the

posterior such as MCMC or Sequential Monte Carlo

(SMC) are applicable, as long as the likelihood of a

forward model 𝑝(𝑋1:𝑇|𝜃) can easily be evaluated by the

actual observations 𝑋1:𝑇
𝑜 together with any prior 𝑝(𝜃),

such that:

𝑝(𝜃|𝑋1:𝑇
𝑜) ∝ ℒ(𝜃; 𝑋1:𝑇

𝑜) 𝑝(𝜃).

In case of most practical-scale ABMs, however, the

likelihood function ℒ(𝜃; 𝑋1:𝑇
𝑜) ≡ 𝑝(𝑋1:𝑇

𝑜 |𝜃) is generally

intractable, in other words, not available in closed-form.

This is the central challenge in Bayesian inference on an

ABM. The existing study by Grazzini et al. (2017) tried to

approximate the likelihood function, and apply standard

posterior sampling schemes such as MCMC with the

approximated likelihood. They limited their scope to

ergodic ABMs, to ensure simulation time series generated

from a model remain stationary around the deterministic

steady state level 𝑔∗(𝜃) as:

𝑋1:𝑇 = {𝑔∗(𝜃) + 𝜖𝑡}𝑡=1
𝑇 .

In that case, a likelihood of the observation series 𝑋1:𝑇 is

just products of a time-invariant density function:

𝑝(𝑋1:𝑇|𝜃) = ∏ 𝑓(𝑋𝑡|𝜃)𝑡 .

One approach of them is to approximate this density

function by (1) non-parametric way of Kernel Density

Estimation: 𝑓(𝑋𝑡|𝜃) ≈ 𝑓(𝑋𝑡|𝜃) = 𝐾𝐷𝐸(𝑋1:𝑇(𝜃)) . This

is simply a histogram smoothing of the simulation data

generated from an ABM with a set of parameters. Another

1 Initial micro-states 𝑆0 = {𝑠𝑖,0}𝑖=1

𝑁
 could be included in parameters or

approach proposed by the study is to use (2) a Gaussian

density 𝑓(𝑋𝑡|𝜃) ≈ 𝑁(𝑔∗(𝜃), 𝜎𝜖
2𝕀𝐾) rather than KDE.

The use of a parametric distribution can clearly reduce

computational costs, which could be prohibitive in case of

multivariate KDE, at the expense of flexibility or

expressive power. In both cases, a likelihood of the

parameters is calculated by evaluating the constructed

density at observed data points: ℒ(𝜃; 𝑋1:𝑇
𝑜) = ∏ 𝑓(𝑋𝑡

𝑜|𝜃)𝑡 .

They also applied (3) Approximate Bayesian Computation

that directory approximates a likelihood function by a 1-0

indicator function: 𝑝(𝑋1:𝑇
𝑜 |𝜃) ≈

𝕀(𝑑[𝜇(𝑋1:𝑇(𝜃)), 𝜇(𝑋1:𝑇
𝑜)] < ℎ) , where 𝜇(∙) is a

summary statistics, 𝑑[∙,∙] is a distance measure, and ℎ is

a threshold for distance. This approach could potentially

perform well in the wider class of ABMs with a relatively

cheaper computational burden, only if pre-selection or

hand-crafted design of an indicator function is appropriate

to approximate the target likelihood. However, such a

good pre-selection is difficult in practice.

2.4.Likelihood-free Approach: BayesFlow

In this paper, I opt to adopt a novel likelihood-free

Bayesian inference of BayesFlow proposed by Radev et al.

(2020). This can mitigate the trilemma in the existing

methods that all of the following three – higher flexibility,

lower computational cost, and smaller arbitrariness cannot

be achieved at the same time.

BayesFlow is fully likelihood-free approach, which

directly approximates a posterior 𝑝(𝜃|𝑋1:𝑇), rather than a

likelihood function 𝑝(𝑋1:𝑇|𝜃) . It does not need to

presume ergodicity of ABM, or stationarity of simulated

time series. This likelihood-free approach only requires

the ability to output simulation data from a forward model,

which generates samples of observable variables by a

deterministic function 𝐺 of parameters 𝜃 and

independent noises 𝜉 with known distribution as:

𝑋𝑡~𝑝(𝑋|𝜃) ⟺ 𝑋𝑡 = 𝑔(𝜃, 𝜉𝑡) with 𝜉𝑡~𝑝(𝜉),

or 𝑇 samples simultaneously as:

𝑋1:𝑇~𝑝(𝑋1:𝑇|𝜃) ⟺ 𝑋1:𝑇 = 𝐺(𝜃, 𝜉1:𝑇) with 𝜉1:𝑇~𝑝(𝜉).

(4)

sampled from the given distribution as stochastic elements.

人工知能学会研究会資料
SIG-FIN-025

3

Here, the likelihood 𝑝(𝑋1:𝑇|𝜃) is only implicitly defined

and need not be available in closed-form. Therefore,

BayesFlow can seamlessly be applied to an agent-based

model since a simulation data generation function 𝐺 of

an ABM in Eq. (3) meets this sampling requirement.

The goal of BayesFlow is to approximate the target

posterior by the parameterized approximate posterior as

accurately as possible:

𝑝(𝜃|𝑋1:𝑇) ≈ 𝑝𝜙(𝜃|𝑋1:𝑇).

BayesFlow utilizes a conditional invertible neural network

(cINN) to this objective. In other word, the cINN

constitutes an invertible function 𝑓𝜙:ℝ
𝑑 → ℝ𝑑

parameterized by a vector of parameters 𝜙, for which the

inverse 𝑓𝜙
−1:ℝ𝑑 → ℝ𝑑 exists. The approximate posterior

𝑝𝜙 is then reparameterized in terms of a cINN 𝑓𝜙 that

implements a Normalizing Flow (Rezende & Mohamed,

2015) between 𝜃 and a standard Gaussian latent

variable 𝑧:

𝜃~𝑝𝜙(𝜃|𝑋1:𝑇) ⟺ 𝜃 = 𝑓𝜙
−1(𝑧; 𝑋1:𝑇) with 𝑧~𝑁(𝑧|0, 𝕀𝑑).

Namely, the cINN is to be trained so that outputs of its

inverse 𝑓𝜙
−1 follow the target posterior 𝑝(𝜃|𝑋1:𝑇).

2.5.Learning the Posterior

The training objective for the cINN is thus to minimize the

Kullback-Leibler (KL) divergence between the target and

the model-induced approximate posterior for all possible

series of observable variables 𝑋1:𝑇 as follows:

𝜙̂ = argmin
𝜙

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇)
[𝕂𝕃[𝑝(𝜃|𝑋1:𝑇)||𝑝𝜙(𝜃|𝑋1:𝑇)]]

 = argmin
𝜙

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇) [𝔼𝜃~𝑝(𝜃|𝑋1:𝑇)[log 𝑝(𝜃|𝑋1:𝑇)

− log 𝑝𝜙(𝜃|𝑋1:𝑇)]]

 = argmax
𝜙

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇)
[𝔼𝜃~𝑝(𝜃|𝑋1:𝑇)

[log 𝑝𝜙(𝜃|𝑋1:𝑇)]]

 = argmax
𝜙

∬𝑝(𝑋, 𝜃; 𝑇) log 𝑝𝜙(𝜃|𝑋1:𝑇) 𝑑𝑋1:𝑇𝑑𝜃

Then, since the forward transmission of cINN outputs by

definition a standard Gaussian latent variable

𝑓𝜙(𝜃; 𝑋1:𝑇) = 𝑧, the density transformation law of random

variable enables the reparameterization of the

approximate posterior 𝑝𝜙 in terms of cINN 𝑓𝜙 as

follows:

𝑝𝜙(𝜃|𝑋1:𝑇) = 𝑝 (𝑧 = 𝑓𝜙(𝜃; 𝑋1:𝑇)) |det (
𝜕𝑓𝜙(𝜃; 𝑋1:𝑇)

𝜕𝜃
)|.

This is a fundamental operation of a Normalizing Flow.

Incorporating this fact, the training objective can be re-

written as:

𝜙̂ = argmax
𝜙

∬𝑝(𝑋, 𝜃; 𝑇) {log 𝑝 (𝑓𝜙(𝜃; 𝑋1:𝑇))

+ log |det 𝐽𝑓𝜙|} 𝑑𝑋1:𝑇𝑑𝜃,

(5)

where 𝐽𝑓𝜙 stands for 𝜕𝑓𝜙(𝜃; 𝑋1:𝑇) 𝜕𝜃⁄ (the Jacobian of

𝑓𝜙 evaluated at 𝜃 and 𝑋1:𝑇).

Even in the likelihood-free setting, it is easy to generate

samples from (𝜃(𝑗), 𝑋1:𝑇
(𝑗)
)~𝑝(𝑋, 𝜃; 𝑇) with a forward

model 𝐺 and the prior 𝑝(𝜃) as shown in Eq.(4).

Utilizing the 𝑀 sets of data-generating parameters and

corresponding simulated data {(𝜃(𝑗), 𝑋1:𝑇
(𝑗)
)}

𝑗=1

𝑀

, the

expectation in Eq.(5) is approximated by the Monte-Carlo

estimate as follows:

𝜙̂ = argmax
𝜙

1

𝑀
∑ log 𝑝 (𝑓𝜙 (𝜃

(𝑗); 𝑋1:𝑇
(𝑗)
))

𝑀

𝑗=1

+ log |det 𝐽𝑓𝜙
(𝑗)
|.

(6)

By taking negative of Eq.(6) and using the fact that

log𝑁(𝑧|0, 𝕀𝑑) ∝ −
1

2
‖𝑧‖2

2, the training objective for cINN

now becomes:

𝜙̂ = argmin
𝜙

 ℒ(𝜙)

with

ℒ(𝜙) =
1

𝑀
∑ (

‖𝑓𝜙 (𝜃
(𝑗); 𝑋1:𝑇

(𝑗)
)‖

2

2

2
− log |det 𝐽𝑓𝜙

(𝑗)
|)

𝑀

𝑗=1
.

人工知能学会研究会資料
SIG-FIN-025

4

(7)

The ℒ(𝜙) is a loss function for this posterior

approximation task, which can be minimized with any

stochastic gradient descent algorithm.

2.6.Summary Network

When training cINN with simulated datasets, Radev et al.

(2020) recommended to use a summary network 𝑓𝜓 to

construct an estimate of sufficient statistics that captures

all information about 𝜃 contained in 𝑋1:𝑇 in a fixed-size

representation 𝑋̃ = 𝑓𝜓 (𝑋1:𝑇) . Since the number of

observations or time points usually varies in a practical

conduct of Bayesian inference, the method needs to be

generalized to data of variable size 𝑇. Furthermore, the

training of cINN could be more efficient with the sort of

dimensionality reduction as datasets might exhibit some

redundancies without any pre-selection of observable

variables.

BayesFlow is designed to use a bidirectional LSTM

(Graves & Schmidhuber, 2005) as a summary network for

time series-data. LSTM network is well known to be able

to effectively deal with the long-memory (i.e. non-ergodic

and non-stationary) serial data such as natural language

sentences. Indeed, Radev et al. (2020) showed high

accuracies2 of BayesFlow even in the tasks to estimate the

parameters of potentially chaotic (the Ricker population

model) and non-ergodic (the Levy-Flight model)

mathematical models.

In the context of ABM estimation, this feature of

BayesFlow can unleash full flexibility of agent-based

models, as it does no longer require ergodicity or

stationarity of its output time series.

The parameters of the summary network are jointly

optimized with those of the cINN. Hence, the training

objective is now finalized as:

𝜙̂, 𝜓̂

= argmax
𝜙,𝜓

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇) [𝔼𝜃~𝑝(𝜃|𝑋1:𝑇) [log 𝑝𝜙 (𝜃|𝑓𝜓 (𝑋1:𝑇))]]

2 They tested accuracy of recovering the ground-truth parameter values

 = argmin
𝜙,𝜓

ℒ(𝜙, 𝜓)

with

ℒ(𝜙, 𝜓) =
1

𝑀
∑

(

‖𝑓𝜙 (𝜃

(𝑗); 𝑓𝜓 (𝑋1:𝑇
(𝑗)
))‖

2

2

2

𝑀

𝑗=1

− log |det 𝐽𝑓𝜙
(𝑗)
|

)

.

(8)

2.7.Structure of Invertible Networks

The cINN is constructed as a chain of multiple conditional

affine coupling blocks (cACBs). The idea of an ACB was

originally introduced by Dinh et al. (2017), which

implements an invertible non-linear transformation:

𝑓𝑎𝑐𝑏:ℝ
𝑑 → ℝ𝑑 and 𝑓𝑎𝑐𝑏

−1 :ℝ𝑑 → ℝ𝑑. Each ACB consists of

four separate fully connected neural networks denoted as

𝑠1(∙), 𝑠2(∙), 𝑡1(∙), 𝑡2(∙). These internal networks need not

be invertible since they are only evaluated in a forward

direction during both the forward and the inverse

operations of an ACB. By denoting input vector of 𝑓𝑎𝑐𝑏

as 𝑈 and output vector as 𝑉 , the forward and inverse

transformations of the vectors are expressed as 𝑓𝑎𝑐𝑏(𝑈) =

𝑉 and 𝑓𝑎𝑐𝑏
−1 (𝑉) = 𝑈 . This invertibility is realized by

splitting the input vector into two parts 𝑈 = (𝑈1, 𝑈2)

with 𝑈1 = 𝑢1:𝑑/2 and 𝑈2 = 𝑢𝑑/2+1:𝑑 and performing

the following operations on the split input:

𝑉1 = 𝑈1⨀exp(𝑠1(𝑈2)) + 𝑡1(𝑈2)

𝑉2 = 𝑈2⨀exp(𝑠2(𝑈1)) + 𝑡2(𝑈1)

𝑉 = (𝑉1, 𝑉2)

where ⨀ represents element-wise multiplication. Then,

the inverse operation is given by:

𝑈1 = (𝑉2 − 𝑡2(𝑈1))⨀exp(𝑠2(𝑈1))

𝑈2 = (𝑉1 − 𝑡1(𝑈2))⨀exp(𝑠1(𝑈2))

This formulation ensures that the Jacobian of cINN is a

strictly upper or a lower triangular matrix and therefore its

from out-of-sample simulation data.

人工知能学会研究会資料
SIG-FIN-025

5

determinant (det 𝐽𝑓𝜙) is quite cheap to compute, which is

an important feature when using it in a Normalizing Flow.

Then, ACB is augmented to take the summary statistics 𝑋̃

as a conditioning input, so as to switch the pattern of

bidirectional transformations along with the values of

observations 𝑋1:𝑇 as follows:

𝑉1 = 𝑈1⨀exp (𝑠1(𝑈2, 𝑋̃)) + 𝑡1(𝑈2, 𝑋̃)

𝑉2 = 𝑈2⨀exp (𝑠2(𝑈1, 𝑋̃)) + 𝑡2(𝑈1, 𝑋̃).

This structure is a conditional affine coupling block

(cACB). BayesFlow stacks the multiple cACBs to make

the whole neural network architecture (i.e. cINN)

expressive enough to implement a potentially complex

mapping between the 𝑑-dimantinal vector of parameters

𝜃 and a same dimensional vector of unit Gaussian

variables 𝑧. Eventually, the entire conditional invertible

neural network (cINN) is expressed as a function 𝑧 =

𝑓𝜙(𝜃; 𝑋̂) , together with the inverse operation 𝜃 =

𝑓𝜙
−1(𝑧; 𝑋̂).

2.8.Amortized Inference

For most Bayesian inference algorithms, the entire

estimation process must be repeated from scratch when

dealing with the different observation sequences (e.g.

𝑋1:𝑇
(𝑖)

 and 𝑋1:𝑇
(𝑗)

 with 𝑖 ≠ 𝑗). In contrast, Bayes flow

realizes amortized inference, where estimation is split into

a computationally expensive training phase, and a much

cheaper inference phase. In the training phase, BayesFlow

tries to learn a model to output an approximate posterior

𝑝𝜙̂(𝜃|𝑋1:𝑇) that works well for any possible observation

sequence 𝑋1:𝑇. Namely, cINN is trained up front so that

its inverse operation outputs samples from an approximate

posterior given observations: 𝑓𝜙
−1(𝑧|𝑋1:𝑇

𝑜) =

𝜃̂~𝑝𝜙(𝜃|𝑋1:𝑇
𝑜) with 𝑧~𝑁(0, 𝕀𝑑) . Hence, evaluating the

trained model over a specific observation dataset 𝑋1:𝑇
𝑜 is

computationally very chap, so that the upfront training

efforts amortizes over multiple inferences.

Putting it all together, a whole procedure of Bayesian

inference with the BayesFlow method is summarized as

Algorithm 1.

Algorithm 1: Bayesian inference with the BayesFlow method

3. Experiments

3.1.Training

All networks were implemented in Python using the

pytorch library and trained on a single-GPU machine

quipped with NVIDIA(R) GTX1050Ti graphics card.

Stochastic gradient decent is implemented by Adam

optimizer with default setting of pytorch package

(learning rate of 0.001). Following the original paper of

BayesFlow (Radev et al., 2020), online learning approach

is taken, where data are simulated from an ABM on

demand. As the network never experiences the same input

data twice, training can continue as long as the loss keeps

decreasing without any concern on overfitting in the

classical sense. I performed total 40 000 online update

steps in the training with each step using a new pair of

parameters and simulated timeseries from an ABM.

Incidentally, in the both of two examples explained below,

just around 20 000 online steps were enough for the neural

networks to reach convergence. Meanwhile, if one

simulation takes a high computational cost, a researcher

1 : Training (with online simulation data generations)

2 : repeat

3 : Sample sequence length of observations:

4 : Sample a batch of parameters from prior:

5 : Simulate data sets size via the data generation function Eq.(4):

6 : Pass into summary network to obtain summary statistics:

7 : Pass into cINN to obtain

8 : Compute loss according to Eq.(8)

9 : Update neural network parameters via backpropagation

10 : until convergence to

11 :

12 : Inference (given observed or test data)

13 Compute summary of the data

14 : for do

15 : Sample

16 : Compute inverse

17 : end

18 : Return as a sample from

𝑇~𝑈 𝑇 𝑖 , 𝑇 𝑎

𝜃 𝑗
𝑗=1

𝑀
~𝑝 𝜃

𝑀 𝑇 𝑋1:𝑇
𝑗
= 𝐺 𝜃(𝑗) , 𝜉1:𝑇

𝑗=1

𝑀

𝑋1:𝑇
𝑗

𝑗=1

𝑀
𝑋̃(𝑗) = 𝑓𝜓 𝑋1:𝑇

𝑗

𝑗=1

𝑀

𝜃 𝑗 ,𝑋1:𝑇
𝑗

𝑗=1

𝑀
𝑧 𝑗 = 𝑓𝜙 𝜃 𝑗 ; 𝑋̃(𝑗)

𝑗=1

𝑀

𝜙,𝜓

𝜙̂, 𝜓̂

𝑋𝑜

 = 1, … ,

𝑋̃𝑜 = 𝑓𝜓 𝑋1:𝑇
𝑜

𝑧 ~𝑁 0, 𝕀𝑑

𝜃 = 𝑓𝜙
−1 𝑧 ; 𝑋̃𝑜

𝜃
 =1

𝐿
𝑝 𝜃|𝑋𝑜

人工知能学会研究会資料
SIG-FIN-025

6

can opt to perform off-line learning approach, in which the

fixed number of samples according with the

computational budget are generated ex-ante from an ABM,

and then the widely parallelized batch learning should be

performed on GPU. In any case, the converged networks

can repeatedly be used to perform amortized inference on

a different observation dataset. As for the hyperparameters,

I opt to use a default BayesFlow with 5 ABCs, and a

summary vector of size 32 obtained through 3-layer

bidirectional LSTM without extensive tune-up.

3.2.Performance Validation

To evaluate the performance of applying BayesFlow to

ABM estimation, I opt to use the following two simple

metrics defined between the ground-truth parameters

{𝜃()}
 =1

𝐿
 which generate the test simulation datasets

{𝑋1:𝑇
𝑜 (𝜃())}

 =1

𝐿
 and the estimated parameters {𝜃̂()}

 =1

𝐿

reproduced from the test datasets. The number of test

estimations is one hundred: = 100.

(1) Normalized Rooted Mean Squared Error: 𝑁𝑅𝑀𝑆𝐸 =

√∑
(𝜃(𝑙)−𝜃 (𝑙))

2

𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

𝐿
 =1

(2) Coefficient of determination: 𝑅2 = 1 −

∑
(𝜃(𝑙)−𝜃 (𝑙))

2

(𝜃(𝑙)−𝜃̅(𝑙))
2

𝐿
 =1

The competing benchmark for the validation is the non-

parametric KDE with MCMC (a random walk Metropolis-

Hastings algorithm) proposed by Grazzini et al. (2017), in

which 4 000 iterations are conducted for each estimation

procedure.

In the actual experiments, I opt to perform Bayesian

inference on the ABM: the minimal stock market ABM

with 1 parameter which was originally proposed by Cliff

& Bruten (1997), taken up for the estimation experiments

by Grazzini & Richiardi (2015) and Grazzini et al. (2017).

3.3.A Minimal Stock Market ABM with 1

parameter

This minimal stock market ABM is populated by sellers

and buyers who adjust their profit margin 𝜇𝑖,𝑡 , and set

price for a bid or ask limit orders by watching an order

book of market. The limit price of trader 𝑖 in period 𝑡 is

updated as the following rule:

𝑝𝑖,𝑡+1 = 𝑣𝑖(1 + 𝜇𝑖,𝑡+1),

𝜇𝑖,𝑡+1 = (𝑝𝑖,𝑡 + Δ𝑖,𝑡) 𝑣𝑖 − 1,⁄

Δ𝑖,𝑡 = 𝛽(𝜏𝑖,𝑡 − 𝑝𝑖,𝑡),

where 𝑣𝑖 is a trader specific volume of order, 𝜏𝑖,𝑡 is an

implicit target price of a trader that is hiked if the last trade

occurred at a higher price, and lowered otherwise. The

behavioral parameter 𝛽 , common to all traders, is the

sensitivity of how traders react to the existing gap between

the target price 𝜏𝑖,𝑡 and the current price 𝑝𝑖,𝑡. The higher

this 𝛽 value, the more sensitive traders are to the prices

of the others, resulting in more elastic market.

In the validation procedure, for each separate trial of =

1,… ,100 , I tried to recover a ground-truth value of the

parameter 𝛽() from the simulated time series of the

market price from this ABM (i.e. 𝑋1:𝑇
𝑜 (𝛽())) by using

BayesFlow and KDE-MCMC, respectively. The values of

ground-truth parameter for the test trials are sampled from

uniform distribution: 𝛽()~𝑈(0,1). The prior distribution

for BayesFlow and KDE-MCMC is the same with

this: 𝑈(0,1).

The results are depicted in Table 1 and

Figure 1. While the both methods fairly succeeded to

BayesFlow KDE-MCMC

BayesFlow KDE-MCMC

人工知能学会研究会資料
SIG-FIN-025

7

recover the ground-truth parameter from the simulated

dataset in most trials, the overall precision measured by

NRMSE and R2 is clearly higher in BayesFlow.

Table 1: Performance results on a minimal stock market ABM.

Figure 1: Parameter recovery plots where x-axis takes value of the

estimated parameter and y-axis is the ground-truth parameter (L=100).

As I performed 100 separate estimations to calculate the

validation metrics, the difference in computational costs

became significant between the amortized inference of

BayesFlow and the case-by-case inference of KDE-

MCMC, even in the minimal 1 parameter ABM. One

simulation run of the ABM with the 500 observation

periods (where the first 500 periods were discarded as

burn-in) takes 1.5 secs. In KDE-MCMC, the likelihood

approximation and the Metropolis-Hastings update cost

additional 2.5 secs. As I conducted 4 000 iterations in the

M-H algorithm for each estimation, the total

computational time for the 100 separate estimations was

massive 444 hours (1 600 000 =100×4 000×(1.5+2.5)

secs). I inevitably parallelized the CPU core processes

over the separable 100 estimations. On the other hand,

BayesFlow took much shorter 18.9 hours (68 152 secs) in

total. While the training phase with 40 000 online training

steps costs 68 000 secs as one step takes 1.7 (=1.5 of data

generation + 0.2 of SGD) secs, the amortized inference

with the 100 separate test datasets only takes 152 (1.5×

100 of test data generation + 2 of inference) secs.

Furthermore, as already mentioned above, the training of

BayesFlow actually reached the convergence with much

fewer steps of 20 000, meaning that computational time

could be shortened by half. Meanwhile, it looks unrealistic

to cut MCMC iterations to less than 4 000 in order to

obtain the accepted samples of more than 1 000.

4. Concluding Remarks

 This paper examines the possibility of applying the novel

likelihood-free Bayesian inference called BayesFlow

proposed by Radev et al. (2020) to the estimation of agent-

based models (ABMs). The BayesFlow is a fully

likelihood-free approach, which directly approximates a

posterior rather than a likelihood function, by learning an

invertible probabilistic mapping that implements a

Normalizing Flow between parameters and a standard

Gaussian variables conditioned by data from simulations.

This deep neural network-based method can mitigate the

trilemma in the existing methods that all of the following

three –higher flexibility, lower computational cost, and

smaller arbitrariness cannot be achieved at the same time.

As a result of the experiments, BayesFlow certainly

achieved the superior accuracies in the validation task of

recovering the ground-truth values of parameters from the

simulated datasets, in a minimal stock market ABM. The

method did not involve any extensive search of the

hyperparameters or hand-crafted pre-selections of

summary statistics, and took a significantly shorter

computational time than an existing non-parametric

MCMC approach.

BayesFlow KDE-MCMC

NRMSE 0.007 0.058

R2 1.000 0.993

BayesFlow KDE-MCMC

BayesFlow KDE-MCMC

人工知能学会研究会資料
SIG-FIN-025

8

References

[１] Assenza, T., Delli Gatti, D., & Grazzini, J. (2015).

Emergent dynamics of a macroeconomic agent based

model with capital and credit. Journal of Economic

Dynamics and Control, 50, 5–28.

https://doi.org/10.1016/j.jedc.2014.07.001

[２] Caiani, A., Godin, A., Caverzasi, E., Gallegati, M.,

Kinsella, S., & Stiglitz, J. E. (2016). Agent based-stock

flow consistent macroeconomics: Towards a benchmark

model. Journal of Economic Dynamics and Control, 69,

375–408. https://doi.org/10.1016/j.jedc.2016.06.001

[３] Cliff, D., & Bruten, J. (1997). Zero is not enough: on the

lower limit of agent intelligence for continuous double

auction markets. In HP Laboratories Technical Report

(Issues 97–141).

[４] Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017, May 27).

Density estimation using real NVP. 5th International

Conference on Learning Representations, ICLR 2017 -

Conference Track Proceedings.

http://arxiv.org/abs/1605.08803

[５] Gallegati, M., & Richiardi, M. G. (2009). Agent Based

Models in Economics and Complexity. In Encyclopedia of

Complexity and Systems Science (pp. 200–224). Springer

New York. https://doi.org/10.1007/978-0-387-30440-3_14

[６] Ghonghadze, J., & Lux, T. (2016). Bringing an elementary

agent-based model to the data: Estimation via GMM and

an application to forecasting of asset price volatility.

Journal of Empirical Finance, 37, 1–19.

https://doi.org/10.1016/j.jempfin.2016.02.002

[７] Graves, A., & Schmidhuber, J. (2005). Framewise

phoneme classification with bidirectional LSTM and other

neural network architectures. Neural Networks, 18(5–6),

602–610. https://doi.org/10.1016/j.neunet.2005.06.042

[８] Grazzini, J., & Richiardi, M. (2015). Estimation of ergodic

agent-based models by simulated minimum distance.

Journal of Economic Dynamics and Control, 51, 148–165.

https://doi.org/10.1016/j.jedc.2014.10.006

[９] Grazzini, J., Richiardi, M. G., & Tsionas, M. (2017).

Bayesian estimation of agent-based models. Journal of

Economic Dynamics and Control, 77, 26–47.

https://doi.org/10.1016/j.jedc.2017.01.014

[１０] Lamperti, F., Roventini, A., & Sani, A. (2018).

Agent-based model calibration using machine learning

surrogates. Journal of Economic Dynamics and Control, 90,

366–389. https://doi.org/10.1016/j.jedc.2018.03.011

[１１] Lux, T. (2018). Estimation of agent-based models

using sequential Monte Carlo methods. Journal of

Economic Dynamics and Control, 91, 391–408.

https://doi.org/10.1016/j.jedc.2018.01.021

[１２] Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L.,

& Köthe, U. (2020). BayesFlow: Learning complex

stochastic models with invertible neural networks.

http://arxiv.org/abs/2003.06281

[１３] Rezende, D. J., & Mohamed, S. (2015). Variational

Inference with Normalizing Flows. 32nd International

Conference on Machine Learning, ICML 2015, 2, 1530–

1538. http://arxiv.org/abs/1505.05770

人工知能学会研究会資料
SIG-FIN-025

9

