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Abstract: This paper examines the possibility of applying the novel likelihood-free Bayesian inference 

called BayesFlow proposed by Radev et al. (2020) to the estimation of agent-based models (ABMs). The 

BayesFlow is a fully likelihood-free approach, which directly approximates a posterior rather than a 

likelihood function, by learning an invertible probabilistic mapping that implements a Normalizing Flow 

between parameters and a standard Gaussian variables conditioned by data from simulations. This deep 

neural network-based method can mitigate the trilemma in the existing methods that all of the following 

three –higher flexibility, lower computational cost, and smaller arbitrariness cannot be achieved at the same 

time. As a result of the experiments, BayesFlow certainly achieved the superior accuracies in the validation 

task of recovering the ground-truth values of parameters from the simulated datasets, in case of a minimal 

stock market ABM. The method did not involve any extensive search of the hyperparameters or hand-

crafted pre-selections of summary statistics, and took a significantly shorter computational time than an 

existing non-parametric MCMC approach. 

 

1.Introduction 

Agent-based models (ABM) have widely been used in 

the field of artificial markets and related-studies to 

investigate the microstructure of financial markets. In 

recent years, they also have increasingly been adopted in 

macroeconomic analysis, as an alternative to DSGE 

models. According to Grazzini et al. (2017), agent-based 

models are characterized by the following three features: 

(1) there are a multitude of agents that interact with each 

other and environment, (2) these agents are autonomous, 

in the sense that there is no central coordinator such as a 

Walrasian auctioneer nor the concealed time-axis in which 

the central coordinator works, and (3) aggregation is 

performed numerically.  

Thus, an ABM allows for extreme flexibility in setting 

the behavioral patterns of each agent in heterogeneous 

manner. There is no prerequisite for rational expectation 

nor (ex-ante) market equilibrium, as the adaptive 

processes of learning and selection by agents are explicitly 

modeled. This assumption in agent’s behavior is a 

fundamental difference between DSGE and ABM. Recent 

studies of agent-based macroeconomic modeling like 

Assenza et al. (2015) and Caiani et al. (2016) succeed to 

reproduce the stylized macroeconomic phenomena such 

as the Phillips curve and the Oaken law from simulations 

of the ABM with adaptive agents. In other words, a 

rational agent was not a necessary condition for these 

observed phenomena of macroeconomy. Furthermore, 

their models precisely described the relationship between 

the financial sector and the real economy by explicitly 

modeling the balance sheet for each economic agent, 

which are therefore useful in discussing the impact on real 

economy from prudent policies on financial institutions. 

Because of its flexibility, ABMs are increasingly being 

understood for their usefulness as a complement to DSGE 

and will continue to be applied to various economic 

phenomena.  

However, it has often been pointed out that an ABM has 

its weakness in the lack of empirical validation (Gallegati 

& Richiardi, 2009). The parameters in an ABM are usually 

calibrated manually to make the model's simulation 

outputs reproduce some particular characteristics of 

economic observables (e.g. fat-tail distribution or 

volatility clustering in stock return). In response to this 

challenge, studies to statistically estimate the parameters 

of ABM have recently begun. 

Against these backgrounds, this paper adopts a novel 

likelihood-free Bayesian inference called BayesFlow 

proposed by Radev et al. (2020) for the statistical 
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estimation of ABMs. This method can mitigate the 

trilemma in the existing methods that all of the following 

three –higher flexibility, lower computational cost, and 

smaller arbitrariness cannot be achieved at the same time. 

The BayesFlow is a fully likelihood-free approach, 

which directly approximates a Bayesian posterior rather 

than a likelihood function. This method is highly flexible, 

only requiring the ability to output simulation data from a 

mathematical forward model, and has an asymptotic 

theoretical guarantee for sampling from the true posterior 

without any specific assumption on the shape of the target 

posterior or prior. Hence, it does not need to presume 

ergodicity or stationarity of simulated time series of a 

model. Indeed, Radev et al. (2020) showed high 

accuracies of the BayesFlow even in the cases of 

potentially chaotic (the Ricker population model) and non-

ergodic (the Levy-Flight model) mathematical models.  

Secondly, in contrast to the typical likelihood-free 

methods such as Approximate Bayesian Computation, 

BayesFlow does not involve discretionary pre-selections 

or hand-crafted design in the critical parts of inference. It 

accompanies the learnable summary network which can 

compress variable-length potentially large dimensional 

inputs into fixed-length small dimensional summary 

statistics. Namely, a researcher does not need to pre-select 

specific moments of specific observables as a hand-crafted 

summary statistics.  

Finally, it is computationally efficient, particularly in 

the case that repeated inferences with different 

observation datasets are needed. BayesFlow realizes 

amortized inference, where estimation is split into a 

computationally intensive training phase, and a much 

cheaper inference phase. In the training phase, BayesFlow 

tries to learn a model to output an approximate posterior 

that works properly for any possible observation sequence. 

Then, evaluating the trained model over a specific 

observation dataset is computationally very cheap, so that 

the upfront training efforts amortizes over multiple 

inferences. 

In the next section, I explain a basic structure of the 

BayesFlow comparing with other related methodologies. 

Then, the procedure and results of validation are presented 

in Section 3, before discussing the advantages and 

limitations with conclusion. 

2.Methods 

2.1.Notation 

In the following, I denote the data simulated from 

agent-based model as 𝑋1:𝑇 ≡ (𝑋1, … , 𝑋𝑇) ∈ ℝ𝐾 ×,… ,×

ℝ𝐾 , where individual 𝑋𝑡  is a vector of observable 

variables in a model with its dimension being denoted as 

𝐾 . The number of observation points in a dataset is 

denoted as 𝑇  to make it clear that simulation outputs 

from an ABM are usually multivariate time-series. 

Simulated data is also expressed as 𝑋1:𝑇(𝜃)  when it 

needs to be emphasized that the data is generated from the 

ABM with parameters 𝜃. Actual observed data or test data 

will be expressed with a superscript as 𝑋1:𝑇
𝑜 . Parameters 

of a forward model (i.e. ABM) are represented as a vector 

𝜃 ∈ ℝ𝑑.  

2.2.Agent-Based Model  

The state of the whole system of an agent-based model at 

time 𝑡 is described by the collection of all micro-states of 

individual agent 𝑖 in time period 𝑡 as 𝑆𝑡 ≡ {𝑠𝑖,𝑡}𝑖=1
𝑁

. The 

evolution or the law of transition of each agent’s state is 

expressed as:  

𝑠𝑖,𝑡 = f𝑖(𝑆𝑡−1, 𝜉𝑡 , 𝜃), 

(1) 

where fi is an agent-wise state transition function, taking 

values in ℝ𝐿 . 𝜉𝑡 ≡ {𝜁𝑖,𝑡}𝑖=1
𝑁

  is a vector to bundle all 

stochastic elements. The functions f reflect the detailed 

modelling of agent’s learning, selection and interaction 

behavior in an ABM, which are typically heterogeneous 

and accompanying discontinuities such as if-else 

statements.  

Aggregate observable variables 𝑋𝑡  are then be defined 

over 𝑆𝑡: 

𝑋𝑡 = m(𝑆𝑡), 

(2) 

where a function m  aggregates and transforms the 

collection of micro-states into observable variables 𝑋𝑡.  

Combining the state transition fi  in Eq.(1) and 

observation m  in Eq.(2), a simulation data generation 

function 𝐺 of a ABM can be defined as follows: 

𝑋1:𝑇 = 𝐺(𝜃, 𝜉1:𝑇) with 𝜉1:𝑇~𝑝(𝜉). 

(3) 
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This function 𝐺 effectively corresponds to one shot of ABM 

simulation run with the parameters 𝜃  and the stochastic 

elements 𝜉1:𝑇 sampled from the known distribution1.  

2.3.Bayesian Inference on Agent-Based Model 

In Bayesian inference, the posterior defined below 

contains all information about 𝜃 extractable from a series 

of observations 𝑋1:𝑇:  

𝑝(𝜃|𝑋1:𝑇) =
𝑝(𝑋1:𝑇|𝜃)𝑝(𝜃)

∫ 𝑝(𝑋1:𝑇|𝜃)𝑝(𝜃) 𝑑𝜃
. 

Even when a closed-form expression of the posterior is 

unobtainable, various sampling schemes from the 

posterior such as MCMC or Sequential Monte Carlo 

(SMC) are applicable, as long as the likelihood of a 

forward model 𝑝(𝑋1:𝑇|𝜃) can easily be evaluated by the 

actual observations 𝑋1:𝑇
𝑜  together with any prior 𝑝(𝜃), 

such that: 

𝑝(𝜃|𝑋1:𝑇
𝑜 ) ∝ ℒ(𝜃; 𝑋1:𝑇

𝑜 ) 𝑝(𝜃). 

In case of most practical-scale ABMs, however, the 

likelihood function ℒ(𝜃; 𝑋1:𝑇
𝑜 ) ≡ 𝑝(𝑋1:𝑇

𝑜 |𝜃) is generally 

intractable, in other words, not available in closed-form. 

This is the central challenge in Bayesian inference on an 

ABM. The existing study by Grazzini et al. (2017) tried to 

approximate the likelihood function, and apply standard 

posterior sampling schemes such as MCMC with the 

approximated likelihood. They limited their scope to 

ergodic ABMs, to ensure simulation time series generated 

from a model remain stationary around the deterministic 

steady state level 𝑔∗(𝜃) as: 

𝑋1:𝑇 = {𝑔∗(𝜃) + 𝜖𝑡}𝑡=1
𝑇 . 

In that case, a likelihood of the observation series 𝑋1:𝑇 is 

just products of a time-invariant density function: 

𝑝(𝑋1:𝑇|𝜃) = ∏ 𝑓(𝑋𝑡|𝜃)𝑡 . 

One approach of them is to approximate this density 

function by (1) non-parametric way of Kernel Density 

Estimation: 𝑓(𝑋𝑡|𝜃) ≈ 𝑓(𝑋𝑡|𝜃) = 𝐾𝐷𝐸(𝑋1:𝑇(𝜃)) . This 

is simply a histogram smoothing of the simulation data 

generated from an ABM with a set of parameters. Another 

 
1 Initial micro-states 𝑆0 = {𝑠𝑖,0}𝑖=1

𝑁
 could be included in parameters or 

approach proposed by the study is to use (2) a Gaussian 

density 𝑓(𝑋𝑡|𝜃) ≈ 𝑁(𝑔∗(𝜃), 𝜎𝜖
2𝕀𝐾)  rather than KDE. 

The use of a parametric distribution can clearly reduce 

computational costs, which could be prohibitive in case of 

multivariate KDE, at the expense of flexibility or 

expressive power. In both cases, a likelihood of the 

parameters is calculated by evaluating the constructed 

density at observed data points: ℒ(𝜃; 𝑋1:𝑇
𝑜 ) = ∏ 𝑓(𝑋𝑡

𝑜|𝜃)𝑡 . 

They also applied (3) Approximate Bayesian Computation 

that directory approximates a likelihood function by a 1-0 

indicator function: 𝑝(𝑋1:𝑇
𝑜 |𝜃) ≈

𝕀(𝑑[𝜇(𝑋1:𝑇(𝜃)), 𝜇(𝑋1:𝑇
𝑜 )] < ℎ) , where 𝜇(∙)  is a 

summary statistics, 𝑑[∙,∙] is a distance measure, and ℎ is 

a threshold for distance. This approach could potentially 

perform well in the wider class of ABMs with a relatively 

cheaper computational burden, only if pre-selection or 

hand-crafted design of an indicator function is appropriate 

to approximate the target likelihood. However, such a 

good pre-selection is difficult in practice. 

2.4.Likelihood-free Approach: BayesFlow 

In this paper, I opt to adopt a novel likelihood-free 

Bayesian inference of BayesFlow proposed by Radev et al. 

(2020). This can mitigate the trilemma in the existing 

methods that all of the following three – higher flexibility, 

lower computational cost, and smaller arbitrariness cannot 

be achieved at the same time. 

BayesFlow is fully likelihood-free approach, which 

directly approximates a posterior 𝑝(𝜃|𝑋1:𝑇), rather than a 

likelihood function 𝑝(𝑋1:𝑇|𝜃) . It does not need to 

presume ergodicity of ABM, or stationarity of simulated 

time series. This likelihood-free approach only requires 

the ability to output simulation data from a forward model, 

which generates samples of observable variables by a 

deterministic function 𝐺  of parameters 𝜃  and 

independent noises 𝜉 with known distribution as: 

𝑋𝑡~𝑝(𝑋|𝜃) ⟺ 𝑋𝑡 = 𝑔(𝜃, 𝜉𝑡) with 𝜉𝑡~𝑝(𝜉), 

or 𝑇 samples simultaneously as: 

𝑋1:𝑇~𝑝(𝑋1:𝑇|𝜃) ⟺ 𝑋1:𝑇 = 𝐺(𝜃, 𝜉1:𝑇) with 𝜉1:𝑇~𝑝(𝜉).  

(4) 

sampled from the given distribution as stochastic elements.  
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Here, the likelihood 𝑝(𝑋1:𝑇|𝜃) is only implicitly defined 

and need not be available in closed-form. Therefore, 

BayesFlow can seamlessly be applied to an agent-based 

model since a simulation data generation function 𝐺 of 

an ABM in Eq. (3) meets this sampling requirement.  

The goal of BayesFlow is to approximate the target 

posterior by the parameterized approximate posterior as 

accurately as possible: 

𝑝(𝜃|𝑋1:𝑇) ≈ 𝑝𝜙(𝜃|𝑋1:𝑇). 

BayesFlow utilizes a conditional invertible neural network 

(cINN) to this objective. In other word, the cINN 

constitutes an invertible function 𝑓𝜙:ℝ
𝑑 → ℝ𝑑 

parameterized by a vector of parameters 𝜙, for which the 

inverse 𝑓𝜙
−1:ℝ𝑑 → ℝ𝑑 exists. The approximate posterior 

𝑝𝜙  is then reparameterized in terms of a cINN 𝑓𝜙 that 

implements a Normalizing Flow (Rezende & Mohamed, 

2015) between 𝜃  and a standard Gaussian latent 

variable 𝑧:  

𝜃~𝑝𝜙(𝜃|𝑋1:𝑇) ⟺ 𝜃 = 𝑓𝜙
−1(𝑧; 𝑋1:𝑇) with 𝑧~𝑁(𝑧|0, 𝕀𝑑). 

Namely, the cINN is to be trained so that outputs of its 

inverse 𝑓𝜙
−1 follow the target posterior 𝑝(𝜃|𝑋1:𝑇).  

2.5.Learning the Posterior  

The training objective for the cINN is thus to minimize the 

Kullback-Leibler (KL) divergence between the target and 

the model-induced approximate posterior for all possible 

series of observable variables 𝑋1:𝑇 as follows: 

𝜙̂ = argmin
𝜙

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇)
[𝕂𝕃[𝑝(𝜃|𝑋1:𝑇)||𝑝𝜙(𝜃|𝑋1:𝑇)]] 

    = argmin
𝜙

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇) [𝔼𝜃~𝑝(𝜃|𝑋1:𝑇)[log 𝑝(𝜃|𝑋1:𝑇)

− log 𝑝𝜙(𝜃|𝑋1:𝑇)]] 

    = argmax
𝜙

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇)
[𝔼𝜃~𝑝(𝜃|𝑋1:𝑇)

[log 𝑝𝜙(𝜃|𝑋1:𝑇)]] 

    = argmax
𝜙

∬𝑝(𝑋, 𝜃; 𝑇) log 𝑝𝜙(𝜃|𝑋1:𝑇) 𝑑𝑋1:𝑇𝑑𝜃 

Then, since the forward transmission of cINN outputs by 

definition a standard Gaussian latent variable 

𝑓𝜙(𝜃; 𝑋1:𝑇) = 𝑧, the density transformation law of random 

variable enables the reparameterization of the 

approximate posterior 𝑝𝜙  in terms of cINN 𝑓𝜙  as 

follows: 

𝑝𝜙(𝜃|𝑋1:𝑇) = 𝑝 (𝑧 = 𝑓𝜙(𝜃; 𝑋1:𝑇)) |det (
𝜕𝑓𝜙(𝜃; 𝑋1:𝑇)

𝜕𝜃
)|. 

This is a fundamental operation of a Normalizing Flow. 

Incorporating this fact, the training objective can be re-

written as: 

𝜙̂ = argmax
𝜙

∬𝑝(𝑋, 𝜃; 𝑇) {log 𝑝 (𝑓𝜙(𝜃; 𝑋1:𝑇))

+ log |det 𝐽𝑓𝜙|} 𝑑𝑋1:𝑇𝑑𝜃, 

(5) 

where 𝐽𝑓𝜙 stands for 𝜕𝑓𝜙(𝜃; 𝑋1:𝑇) 𝜕𝜃⁄  ( the Jacobian of 

𝑓𝜙 evaluated at 𝜃 and 𝑋1:𝑇).  

Even in the likelihood-free setting, it is easy to generate 

samples from (𝜃(𝑗), 𝑋1:𝑇
(𝑗)
)~𝑝(𝑋, 𝜃; 𝑇)  with a forward 

model 𝐺  and the prior 𝑝(𝜃)  as shown in Eq.(4). 

Utilizing the 𝑀 sets of data-generating parameters and 

corresponding simulated data {(𝜃(𝑗), 𝑋1:𝑇
(𝑗)
)}

𝑗=1

𝑀

, the 

expectation in Eq.(5) is approximated by the Monte-Carlo 

estimate as follows:  

𝜙̂ = argmax
𝜙

1

𝑀
∑ log 𝑝 (𝑓𝜙 (𝜃

(𝑗); 𝑋1:𝑇
(𝑗)
))

𝑀

𝑗=1

+ log |det 𝐽𝑓𝜙
(𝑗)
|. 

(6) 

By taking negative of Eq.(6) and using the fact that 

log𝑁(𝑧|0, 𝕀𝑑) ∝ −
1

2
‖𝑧‖2

2, the training objective for cINN 

now becomes: 

𝜙̂ = argmin
𝜙

 ℒ(𝜙)  

with 

ℒ(𝜙) =  
1

𝑀
∑ (

‖𝑓𝜙 (𝜃
(𝑗); 𝑋1:𝑇

(𝑗)
)‖

2

2

2
− log |det 𝐽𝑓𝜙

(𝑗)
|)

𝑀

𝑗=1
. 
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(7) 

The ℒ(𝜙)  is a loss function for this posterior 

approximation task, which can be minimized with any 

stochastic gradient descent algorithm. 

2.6.Summary Network 

When training cINN with simulated datasets, Radev et al. 

(2020) recommended to use a summary network 𝑓𝜓  to 

construct an estimate of sufficient statistics that captures 

all information about 𝜃 contained in 𝑋1:𝑇 in a fixed-size 

representation 𝑋̃ = 𝑓𝜓 (𝑋1:𝑇) . Since the number of 

observations or time points usually varies in a practical 

conduct of Bayesian inference, the method needs to be 

generalized to data of variable size 𝑇. Furthermore, the 

training of cINN could be more efficient with the sort of 

dimensionality reduction as datasets might exhibit some 

redundancies without any pre-selection of observable 

variables.  

BayesFlow is designed to use a bidirectional LSTM 

(Graves & Schmidhuber, 2005) as a summary network for 

time series-data. LSTM network is well known to be able 

to effectively deal with the long-memory (i.e. non-ergodic 

and non-stationary) serial data such as natural language 

sentences. Indeed, Radev et al. (2020) showed high 

accuracies2 of BayesFlow even in the tasks to estimate the 

parameters of potentially chaotic (the Ricker population 

model) and non-ergodic (the Levy-Flight model) 

mathematical models. 

In the context of ABM estimation, this feature of 

BayesFlow can unleash full flexibility of agent-based 

models, as it does no longer require ergodicity or 

stationarity of its output time series. 

The parameters of the summary network are jointly 

optimized with those of the cINN. Hence, the training 

objective is now finalized as: 

 

𝜙̂, 𝜓̂

= argmax
𝜙,𝜓

𝔼𝑋1:𝑇~𝑝(𝑋;𝑇) [𝔼𝜃~𝑝(𝜃|𝑋1:𝑇) [log 𝑝𝜙 (𝜃|𝑓𝜓 (𝑋1:𝑇))]] 

 
2 They tested accuracy of recovering the ground-truth parameter values 

         = argmin
𝜙,𝜓

ℒ(𝜙, 𝜓) 

with 

ℒ(𝜙, 𝜓) =  
1

𝑀
∑

(

 
 
‖𝑓𝜙 (𝜃

(𝑗); 𝑓𝜓  (𝑋1:𝑇
(𝑗)
))‖

2

2

2

𝑀

𝑗=1

− log |det 𝐽𝑓𝜙
(𝑗)
|

)

 
 
. 

(8) 

2.7.Structure of Invertible Networks 

The cINN is constructed as a chain of multiple conditional 

affine coupling blocks (cACBs). The idea of an ACB was 

originally introduced by Dinh et al. (2017), which 

implements an invertible non-linear transformation: 

𝑓𝑎𝑐𝑏:ℝ
𝑑 → ℝ𝑑 and 𝑓𝑎𝑐𝑏

−1 :ℝ𝑑 → ℝ𝑑. Each ACB consists of 

four separate fully connected neural networks denoted as 

𝑠1(∙), 𝑠2(∙), 𝑡1(∙), 𝑡2(∙). These internal networks need not 

be invertible since they are only evaluated in a forward 

direction during both the forward and the inverse 

operations of an ACB. By denoting input vector of 𝑓𝑎𝑐𝑏 

as 𝑈 and output vector as 𝑉 , the forward and inverse 

transformations of the vectors are expressed as 𝑓𝑎𝑐𝑏(𝑈) =

𝑉  and 𝑓𝑎𝑐𝑏
−1 (𝑉) = 𝑈 . This invertibility is realized by 

splitting the input vector into two parts 𝑈 = (𝑈1, 𝑈2) 

with 𝑈1 = 𝑢1:𝑑/2  and 𝑈2 = 𝑢𝑑/2+1:𝑑  and performing 

the following operations on the split input: 

𝑉1 = 𝑈1⨀exp(𝑠1(𝑈2)) + 𝑡1(𝑈2) 

𝑉2 = 𝑈2⨀exp(𝑠2(𝑈1)) + 𝑡2(𝑈1) 

𝑉 = (𝑉1, 𝑉2) 

where ⨀ represents element-wise multiplication. Then, 

the inverse operation is given by: 

𝑈1 = (𝑉2 − 𝑡2(𝑈1))⨀exp(𝑠2(𝑈1)) 

𝑈2 = (𝑉1 − 𝑡1(𝑈2))⨀exp(𝑠1(𝑈2)) 

This formulation ensures that the Jacobian of cINN is a 

strictly upper or a lower triangular matrix and therefore its 

from out-of-sample simulation data. 
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determinant (det 𝐽𝑓𝜙) is quite cheap to compute, which is 

an important feature when using it in a Normalizing Flow. 

Then, ACB is augmented to take the summary statistics 𝑋̃ 

as a conditioning input, so as to switch the pattern of 

bidirectional transformations along with the values of 

observations 𝑋1:𝑇 as follows: 

𝑉1 = 𝑈1⨀exp (𝑠1(𝑈2, 𝑋̃)) + 𝑡1(𝑈2, 𝑋̃) 

𝑉2 = 𝑈2⨀exp (𝑠2(𝑈1, 𝑋̃)) + 𝑡2(𝑈1, 𝑋̃). 

This structure is a conditional affine coupling block 

(cACB). BayesFlow stacks the multiple cACBs to make 

the whole neural network architecture (i.e. cINN) 

expressive enough to implement a potentially complex 

mapping between the 𝑑-dimantinal vector of parameters 

𝜃  and a same dimensional vector of unit Gaussian 

variables 𝑧. Eventually, the entire conditional invertible 

neural network (cINN) is expressed as a function 𝑧 =

𝑓𝜙(𝜃; 𝑋̂) , together with the inverse operation 𝜃 =

𝑓𝜙
−1(𝑧; 𝑋̂). 

2.8.Amortized Inference  

For most Bayesian inference algorithms, the entire 

estimation process must be repeated from scratch when 

dealing with the different observation sequences (e.g. 

𝑋1:𝑇
(𝑖)

 and 𝑋1:𝑇
(𝑗)

 with 𝑖 ≠ 𝑗 ). In contrast, Bayes flow 

realizes amortized inference, where estimation is split into 

a computationally expensive training phase, and a much 

cheaper inference phase. In the training phase, BayesFlow 

tries to learn a model to output an approximate posterior 

𝑝𝜙̂(𝜃|𝑋1:𝑇) that works well for any possible observation 

sequence 𝑋1:𝑇. Namely, cINN is trained up front so that 

its inverse operation outputs samples from an approximate 

posterior given observations: 𝑓𝜙
−1(𝑧|𝑋1:𝑇

𝑜 ) =

𝜃̂~𝑝𝜙(𝜃|𝑋1:𝑇
𝑜 ) with 𝑧~𝑁(0, 𝕀𝑑) . Hence, evaluating the 

trained model over a specific observation dataset 𝑋1:𝑇
𝑜  is 

computationally very chap, so that the upfront training 

efforts amortizes over multiple inferences.  

Putting it all together, a whole procedure of Bayesian 

inference with the BayesFlow method is summarized as 

Algorithm 1.  

 

Algorithm 1: Bayesian inference with the BayesFlow method 

3. Experiments 

3.1.Training 

All networks were implemented in Python using the 

pytorch library and trained on a single-GPU machine 

quipped with NVIDIA(R) GTX1050Ti graphics card. 

Stochastic gradient decent is implemented by Adam 

optimizer with default setting of pytorch package 

(learning rate of 0.001). Following the original paper of 

BayesFlow (Radev et al., 2020), online learning approach 

is taken, where data are simulated from an ABM on 

demand. As the network never experiences the same input 

data twice, training can continue as long as the loss keeps 

decreasing without any concern on overfitting in the 

classical sense. I performed total 40 000 online update 

steps in the training with each step using a new pair of 

parameters and simulated timeseries from an ABM. 

Incidentally, in the both of two examples explained below, 

just around 20 000 online steps were enough for the neural 

networks to reach convergence. Meanwhile, if one 

simulation takes a high computational cost, a researcher 

1 : Training (with online simulation data generations)

2 : repeat

3 : Sample sequence length of observations:

4 : Sample a batch of parameters from prior:

5 : Simulate    data sets size    via the data generation function Eq.(4):

6 : Pass              into summary network to obtain summary statistics: 

7 : Pass                           into cINN to obtain

8 : Compute loss according to Eq.(8)

9 : Update neural network parameters           via backpropagation

10 : until convergence to

11 :

12 : Inference (given observed or test data      )

13 Compute summary of the data

14 : for                    do

15 : Sample

16 : Compute inverse

17 : end

18 : Return                as a sample from 

𝑇~𝑈 𝑇 𝑖 , 𝑇 𝑎 

𝜃 𝑗
𝑗=1

𝑀
~𝑝 𝜃

𝑀 𝑇 𝑋1:𝑇
𝑗
= 𝐺 𝜃(𝑗) , 𝜉1:𝑇

𝑗=1

𝑀

𝑋1:𝑇
𝑗

𝑗=1

𝑀
𝑋̃(𝑗) = 𝑓𝜓 𝑋1:𝑇

𝑗

𝑗=1

𝑀

𝜃 𝑗 ,𝑋1:𝑇
𝑗

𝑗=1

𝑀
𝑧 𝑗 = 𝑓𝜙 𝜃 𝑗 ; 𝑋̃(𝑗)

𝑗=1

𝑀

𝜙,𝜓

𝜙̂, 𝜓̂

𝑋𝑜

 = 1, … ,  

𝑋̃𝑜 = 𝑓𝜓 𝑋1:𝑇
𝑜

𝑧  ~𝑁 0, 𝕀𝑑

𝜃  = 𝑓𝜙
−1 𝑧  ; 𝑋̃𝑜

𝜃  
 =1

𝐿
𝑝 𝜃|𝑋𝑜 
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can opt to perform off-line learning approach, in which the 

fixed number of samples according with the 

computational budget are generated ex-ante from an ABM, 

and then the widely parallelized batch learning should be 

performed on GPU. In any case, the converged networks 

can repeatedly be used to perform amortized inference on 

a different observation dataset. As for the hyperparameters, 

I opt to use a default BayesFlow with 5 ABCs, and a 

summary vector of size 32 obtained through 3-layer 

bidirectional LSTM without extensive tune-up.  

3.2.Performance Validation 

To evaluate the performance of applying BayesFlow to 

ABM estimation, I opt to use the following two simple 

metrics defined between the ground-truth parameters 

{𝜃( )}
 =1

𝐿
 which generate the test simulation datasets 

{𝑋1:𝑇
𝑜 (𝜃( ))}

 =1

𝐿
 and the estimated parameters {𝜃̂( )}

 =1

𝐿
 

reproduced from the test datasets. The number of test 

estimations is one hundred:  = 100. 

(1) Normalized Rooted Mean Squared Error: 𝑁𝑅𝑀𝑆𝐸 =

√∑
(𝜃(𝑙)−𝜃 (𝑙))

2

𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

𝐿
 =1    

(2) Coefficient of determination: 𝑅2 = 1 −

∑
(𝜃(𝑙)−𝜃 (𝑙))

2

(𝜃(𝑙)−𝜃̅(𝑙))
2

𝐿
 =1    

The competing benchmark for the validation is the non-

parametric KDE with MCMC (a random walk Metropolis-

Hastings algorithm) proposed by Grazzini et al. (2017), in 

which 4 000 iterations are conducted for each estimation 

procedure.  

In the actual experiments, I opt to perform Bayesian 

inference on the ABM: the minimal stock market ABM 

with 1 parameter which was originally proposed by Cliff 

& Bruten (1997), taken up for the estimation experiments 

by Grazzini & Richiardi (2015) and Grazzini et al. (2017).  

3.3.A Minimal Stock Market ABM with 1 

parameter 

This minimal stock market ABM is populated by sellers 

and buyers who adjust their profit margin 𝜇𝑖,𝑡 , and set 

price for a bid or ask limit orders by watching an order 

book of market. The limit price of trader 𝑖 in period 𝑡 is 

updated as the following rule:  

𝑝𝑖,𝑡+1 = 𝑣𝑖(1 + 𝜇𝑖,𝑡+1), 

𝜇𝑖,𝑡+1 = (𝑝𝑖,𝑡 + Δ𝑖,𝑡) 𝑣𝑖 − 1,⁄  

Δ𝑖,𝑡 = 𝛽(𝜏𝑖,𝑡 − 𝑝𝑖,𝑡), 

where 𝑣𝑖 is a trader specific volume of order, 𝜏𝑖,𝑡 is an 

implicit target price of a trader that is hiked if the last trade 

occurred at a higher price, and lowered otherwise. The 

behavioral parameter 𝛽 , common to all traders, is the 

sensitivity of how traders react to the existing gap between 

the target price 𝜏𝑖,𝑡 and the current price 𝑝𝑖,𝑡. The higher 

this 𝛽 value, the more sensitive traders are to the prices 

of the others, resulting in more elastic market.  

In the validation procedure, for each separate trial of  =

1,… ,100 , I tried to recover a ground-truth value of the 

parameter 𝛽( )  from the simulated time series of the 

market price from this ABM (i.e. 𝑋1:𝑇
𝑜 (𝛽( )) ) by using 

BayesFlow and KDE-MCMC, respectively. The values of 

ground-truth parameter for the test trials are sampled from 

uniform distribution: 𝛽( )~𝑈(0,1). The prior distribution 

for BayesFlow and KDE-MCMC is the same with 

this: 𝑈(0,1). 

The results are depicted in Table 1 and 

 

 

Figure 1. While the both methods fairly succeeded to 

BayesFlow KDE-MCMC

BayesFlow KDE-MCMC
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recover the ground-truth parameter from the simulated 

dataset in most trials, the overall precision measured by 

NRMSE and R2 is clearly higher in BayesFlow.  

 
Table 1: Performance results on a minimal stock market ABM. 

 

 

 

 

Figure 1: Parameter recovery plots where x-axis takes value of the 

estimated parameter and y-axis is the ground-truth parameter (L=100). 

 

As I performed 100 separate estimations to calculate the 

validation metrics, the difference in computational costs 

became significant between the amortized inference of 

BayesFlow and the case-by-case inference of KDE-

MCMC, even in the minimal 1 parameter ABM. One 

simulation run of the ABM with the 500 observation 

periods (where the first 500 periods were discarded as 

burn-in) takes 1.5 secs. In KDE-MCMC, the likelihood 

approximation and the Metropolis-Hastings update cost 

additional 2.5 secs. As I conducted 4 000 iterations in the 

M-H algorithm for each estimation, the total 

computational time for the 100 separate estimations was 

massive 444 hours (1 600 000 =100×4 000×(1.5+2.5) 

secs). I inevitably parallelized the CPU core processes 

over the separable 100 estimations. On the other hand, 

BayesFlow took much shorter 18.9 hours (68 152 secs) in 

total. While the training phase with 40 000 online training 

steps costs 68 000 secs as one step takes 1.7 (=1.5 of data 

generation + 0.2 of SGD) secs, the amortized inference 

with the 100 separate test datasets only takes 152 (1.5×

100 of test data generation + 2 of inference) secs. 

Furthermore, as already mentioned above, the training of 

BayesFlow actually reached the convergence with much 

fewer steps of 20 000, meaning that computational time 

could be shortened by half. Meanwhile, it looks unrealistic 

to cut MCMC iterations to less than 4 000 in order to 

obtain the accepted samples of more than 1 000.  

4. Concluding Remarks 

 This paper examines the possibility of applying the novel 

likelihood-free Bayesian inference called BayesFlow 

proposed by Radev et al. (2020) to the estimation of agent-

based models (ABMs). The BayesFlow is a fully 

likelihood-free approach, which directly approximates a 

posterior rather than a likelihood function, by learning an 

invertible probabilistic mapping that implements a 

Normalizing Flow between parameters and a standard 

Gaussian variables conditioned by data from simulations. 

This deep neural network-based method can mitigate the 

trilemma in the existing methods that all of the following 

three –higher flexibility, lower computational cost, and 

smaller arbitrariness cannot be achieved at the same time. 

As a result of the experiments, BayesFlow certainly 

achieved the superior accuracies in the validation task of 

recovering the ground-truth values of parameters from the 

simulated datasets, in a minimal stock market ABM. The 

method did not involve any extensive search of the 

hyperparameters or hand-crafted pre-selections of 

summary statistics, and took a significantly shorter 

computational time than an existing non-parametric 

MCMC approach. 

 

  

BayesFlow KDE-MCMC

NRMSE 0.007 0.058

R2 1.000 0.993

BayesFlow KDE-MCMC

BayesFlow KDE-MCMC
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